Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (6): 597-603    DOI: 10.16511/j.cnki.qhdxxb.2017.26.025
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
用于截瘫患者康复训练的足底轮式驱动外骨骼
马青川, 季林红, 王人成, 李伟
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Foot-wheel driven exoskeleton for rehabilitation training of paraplegic patients
MA Qingchuan, JI Linhong, WANG Rencheng, LI Wei
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5067 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 截瘫患者必须依赖辅具才能保证正常生活,而站立和行走是他们最迫切的需求。该文介绍了一种采用机械结构设计的动力下肢外骨骼,旨在帮助截瘫患者实现交替行走并提高其在康复训练中的参与度。该系统主要包括足底轮式驱动外骨骼和无线控制肘拐2部分。其中外骨骼由置于足底的定制轮毂电机驱动,而肘拐作为辅助器件主要用于保证行走平衡并通过内嵌的无线控制器控制外骨骼行走状态。交替按压左右肘拐上的控制按键可以实现连续行走,而整个行走过程可以完全由使用者实时地掌控。该外骨骼同时设计了电子刹车和最大步长机械限位用以保证使用安全。由一位健康受试者在三维步态分析系统中完成了穿外骨骼和不穿外骨骼情况下的运动对比实验。步态时空参数和运动学曲线表明:该外骨骼可辅助使用者安全而平稳地完成直立行走。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马青川
季林红
王人成
李伟
关键词 动力外骨骼截瘫下肢辅具康复器械    
Abstract:Paraplegic patients must rely on assistive devices for movement with upright walking as their most pressing need. A powered lower-limb exoskeleton with mechanical structure is introduced in this study, which enables the patients to walk alternatively and further benefit their engagement in the rehabilitation training. The system includes a foot-wheel driven exoskeleton and wireless control crutches. The exoskeleton is driven by a hub motor at the bottom of the exoskeleton's foot. The crutches act as auxiliary devices to support the walking and control the exoskeleton motion by the embedded wireless controller. Alternative pressing of button on the crutch enables the continued walking with the whole walking procedure was fully controlled by the user in real-time. An automatic brake and mechanical limitations of the maximum step length were both designed to provide operational safety. The gait of a healthy subject with and without the exoskeleton were analyzed in a 3D gait analysis system. The spatio-temporal parameters and kinematic figures show that the exoskeleton can assist the user to complete secure, stable walk in a standing posture.
Key wordspowered exoskeleton    paraplegia    lower limb orthosis    rehabilitation device
收稿日期: 2016-11-09      出版日期: 2017-06-15
ZTFLH:  TH77  
通讯作者: 季林红,教授,E-mail:jilh@tsinghua.edu.cn     E-mail: jilh@tsinghua.edu.cn
引用本文:   
马青川, 季林红, 王人成, 李伟. 用于截瘫患者康复训练的足底轮式驱动外骨骼[J]. 清华大学学报(自然科学版), 2017, 57(6): 597-603.
MA Qingchuan, JI Linhong, WANG Rencheng, LI Wei. Foot-wheel driven exoskeleton for rehabilitation training of paraplegic patients. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 597-603.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.025  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I6/597
  图1 外骨骼系统
  图2 足底轮式驱动模块
  图3 轮毂电机
  图4 无线控制肘拐
  图5 电控系统原理图(电器元件放大显示)
  图6 实验室环境和外骨骼穿戴效果
  表1 穿外骨骼和不穿外骨骼时空参数对比
  图7 2个连续步态周期内骨盆的转角对比曲线
  图8 2个连续步态周期内肩关节的转角对比曲线
[1] Hussain S, Sheng Q X, Jamwal P K, et al. An intrinsically compliant robotic orthosis for treadmill training[J]. Medical Engineering & Physics, 2012, 34(10):1448-1453.
[2] Cowan R E, Fregly B J, Boninger M L, et al. Recent trends in assistive technology for mobility[J]. Journal of Neuroengineering & Rehabilitation, 2012, 9(3):971-981.
[3] Kittel A, Di M A, Stewart H. Factors influencing the decision to abandon manual wheelchairs for three individuals with a spinal cord injury[J]. Disability & Rehabilitation, 2009, 24(1-3):106-114.
[4] Kirshblum S C, Waring W, Bieringsorensen F, et al. Reference for the 2011 revision of the international standards for neurological classification of spinal cord injury[J]. Journal of Spinal Cord Medicine, 2011, 34(6):547-547.
[5] Hornby T G, Kinnaird C R, Holleran C L, et al. Kinematic, muscular, and metabolic responses during exoskeletal-, elliptical-, or therapist-assisted stepping in people with incomplete spinal cord injury[J]. Physical Therapy, 2012, 92(10):1278-1291.
[6] Castellano V, Coratella D, Felici F. Cost of walking and locomotor impairment[J]. Journal of Electromyography & Kinesiology, 1999, 9(2):149-157.
[7] Talaty M, Esquenazi A, Briceno J E. Differentiating ability in users of the ReWalkTM powered exoskeleton:An analysis of walking kinematics[C]//IEEE International Conference on Rehabilitation Robotics. Seattle, WA, USA:IEEE Press, 2013:1-5.
[8] Hussain S, Xie S Q, Jamwal P K, et al. An intrinsically compliant robotic orthosis for treadmill training[J]. Med Eng Phys, 2012, 34(10):1448-1453.
[9] Strausser K A, Kazerooni H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco, CA, USA:IEEE Press, 2011:4911-4916.
[10] Strausser K A, Swift T A, Zoss A B, et al. Mobile exoskeleton for spinal cord injury:Development and testing[C]//ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. Arlington, MA, USA:ASME, 2011:419-425.
[11] Tanabe S, Hirano S, Saitoh E. Wearable Power-Assist Locomotor (WPAL) for supporting upright walking in persons with paraplegia[J]. NeuroRehabilitation, 2013, 33(1):99-106.
[12] Venkatakrishnan A, Francisco G E, Contreras-Vidal J L. Applications of brain-machine interface systems in stroke recovery and rehabilitation[J]. Current Physical Medicine & Rehabilitation Reports, 2014, 2(2):93-105.
[13] Blank A A, French J A, Pehlivan A U, et al. Current trends in robot-assisted upper-limb stroke rehabilitation:Promoting patient engagement in therapy[J]. Current Physical Medicine & Rehabilitation Reports, 2014, 2(3):184-95.
[14] Low K H. Robot-assisted gait rehabilitation:From exoskeletons to gait systems[C]//Defense Science Research Conference and Expo. Singapore:IEEE Press, 2011:1-10.
[15] Bogue R. Robotic exoskeletons:A review of recent progress[J]. Industrial Robot, 2015, 42(1):5-10.
[16] Contrerasvidal J L, A Bhagat N, Brantley J, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury.[J]. Journal of Neural Engineering, 2016, 13(3), 031001.
[17] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically-inspired soft exosuit[C]//IEEE International Conference on Rehabilitation Robotics. Seattle, WA, USA:IEEE Press, 2013:1-8.
[18] Sasaki D, Noritsugu T, Takaiwa M. Development of pneumatic lower limb power assist wear driven with wearable air supply system[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan:IEEE Press, 2013:4440-4445.
[19] Contreras-Vidal J L, Grossman R G. NeuroRex:A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton[C]//35th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society. Osaka, Japan:IEEE Press, 2013:1579-1582.
[20] Li Z Q, Xie H X, Li W L, et al. Proceeding of human exoskeleton technology and discussions on future research[J]. Chinese Journal of Mechanical Engineering, 2014, 27(3):437-447.
[21] Hammell K R. Spinal cord injury rehabilitation research:Patient priorities, current deficiencies and potential directions[J]. Disability & Rehabilitation, 2010, 32(14):1209-1218.
[22] Chan R P M, Stol K A, Halkyard C R. Review of modelling and control of two-wheeled robots[J]. Annual Reviews in Control, 2013, 37(1):89-103.
[23] 杨正东. 截瘫助行外骨骼步态规划与人机协调性的研究[D]. 北京:清华大学, 2014.YANG Zhengdong. Gait Planning and Human-machine Coordination Study of Walk Assisting Exoskeleton for Paraplegics[D]. Beijing:Tsinghua University, 2014. (in Chinese)
[1] 黎帆, 李东兴, 王殿君, 陈亚, 唐晓强. 基于欠驱动并联索机构的肩关节助力外骨骼[J]. 清华大学学报(自然科学版), 2022, 62(1): 141-148.
[2] 刘宇霖,李银波,卢仁浩,关鑫宇,季林红. 截瘫助行外骨骼髋关节离合式弹性驱动器[J]. 清华大学学报(自然科学版), 2021, 61(1): 42-49.
[3] 关鑫宇, 季林红, 王人成. 无动力储能式截瘫助行外骨骼弹簧刚度优化[J]. 清华大学学报(自然科学版), 2017, 57(11): 1179-1184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn