Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (6): 609-613    DOI: 10.16511/j.cnki.qhdxxb.2017.26.027
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
黄丽达, 陈建国, 袁宏永, 王岩
清华大学 工程物理系, 公共安全研究院, 北京 100084
Terrorist attack vulnerability analysis of a natural gas network based on the Attacker-Defender game model
HUANG Lida, CHEN Jianguo, YUAN Hongyong, WANG Yan
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(1351 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 近年来,全球范围内的恐怖袭击事件愈演愈烈,恐怖势力开始蔓延至各个国家的中心城市。天然气管网作为城市中承载危险品的运输网络,极易成为袭击目标。基于此,该文对天然气管网的恐怖袭击脆弱性进行研究。为描述恐怖袭击事件中袭击者和防御者之间的对抗关系,以某市天然气管网为例,基于博弈理论和网络的最大流模型,建立天然气网络的攻防博弈模型,求解博弈双方策略的Nash均衡解,分析双方的最优策略选择。通过Monte Carlo模拟,分析随机攻击和最优策略攻击的差异。结果表明:对于最优策略攻击,攻击管道数目不同时最优攻击目标也不同,因此无法简单地给出各条管道受到恐怖袭击威胁的优先级,此外,绝大多数随机攻击对系统造成的损失很小。该研究可以为政府部门防范恐怖袭击提供决策支持。
E-mail Alert
关键词 脆弱性恐怖袭击攻防博弈天然气网络最优化    
Abstract:In recent years, terrorist attacks have become even more violent all over the world and terrorist forces have begun to spread to urban cities. Natural gas pipeline networks carrying hazardous materials in cities are easy targets for attacks. This study analyzes the vulnerability of a natural gas network to terrorist attacks. The adversary relationship between the attackers and defenders is modeled for a specfic natural gas transmission system using an attack-defense game based on game theory and the maximum-flow model of networks. The Nash equilibrium of the game strategy is used to analyze the optimal strategy choices of both parties. Monte Carlo simulations are used to compare the differences between random attacks and the optimal attack. The results show that the optimal attack targets differ for different numbers of pipelines, so it is impossible to rank the terrorist threat to pipelines. Additionally, most random attacks have little impact on the system. The conclusions in this paper can provide guidelines reference for government departments to mitigate the effects of terrorist attacks.
Key wordsvulnerability    terrorist attacks    attacker-defender    natural gas network    optimization
收稿日期: 2016-10-11      出版日期: 2017-06-15
ZTFLH:  X959  
通讯作者: 袁宏永,教授,     E-mail:
黄丽达, 陈建国, 袁宏永, 王岩. 基于博弈论的天然气管网恐怖袭击脆弱性分析[J]. 清华大学学报(自然科学版), 2017, 57(6): 609-613.
HUANG Lida, CHEN Jianguo, YUAN Hongyong, WANG Yan. Terrorist attack vulnerability analysis of a natural gas network based on the Attacker-Defender game model. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 609-613.
链接本文:  或
  图1 某市天然气运输网络
  图2 最坏攻击情况下天然气运输网络的最大流量变化
  图3 典型的恐怖袭击脆弱性曲线
  表1 不同的最坏攻击情况下攻击管道的编号
  图4 随机攻击和最优策略攻击的最大流量对比
  图5 随机攻击的结果
[1] Garrick B J, Hall J E, Kilger M, et al. Confronting the risks of terrorism:Making the right decisions[J]. Reliability Engineering & System Safety, 2004, 86(2):129-176.
[2] Ezell B C, Bennett S P, Von Winterfeldt D, et al. Probabilistic risk analysis and terrorism risk[J]. Risk Analysis, 2010, 30(4):575-589.
[3] Chertoff M. National Infrastructure Protection Plan[R]. Washington DC:Department of Homeland Security (DHS), 2009.
[4] Cox Jr L A T. Some limitations of "Risk=Threat×Vulnerability×Consequence" for risk analysis of terrorist attacks[J]. Risk Analysis, 2008, 28(6):1749-1761.
[5] Cox Jr L A T. Improving risk-based decision making for terrorism applications[J]. Risk Analysis, 2009, 29(3):336-341.
[6] Brown G G, Cox Jr L A T. How probabilistic risk assessment can mislead terrorism risk analysts[J]. Risk Analysis, 2011, 31(2):196-204.
[7] Brown G G, Cox Jr L A T. Making terrorism risk analysis less harmful and more useful:Another try[J]. Risk Analysis, 2011, 31(2):193-195.
[8] Brown G, Carlyle M, Salmeron J, et al. Analyzing the vulnerability of critical infrastructure to attack and planning defenses[C]//Tutorials in Operations Research:Emerging Theory, Methods, and Applications. San Francisco, CA, USA:Informs, 2005:102-123.
[9] Brown G, Carlyle M, Salmeron J, et al. Defending critical infrastructure[J]. Interfaces, 2006, 36(6):530-544.
[10] Alderson D L, Brown G G, Carlyle W M. Assessing and improving operational resilience of critical infrastructures and other systems[C]//Tutorials in Operations Research:Bridging Data and Decision. San Francisco, CA, USA:Informs, 2014:180-215.
[11] Alderson D L, Brown G G, Carlyle W M. Operational models of infrastructure resilience[J]. Risk Analysis, 2015, 35(4):562-586.
[12] Ileto J V. Improving Resiliency of the Petroleum Supply Chain for the Hawaiian Islands[D]. Monterey:Naval Postgraduate School, 2011.
[13] De la Cruz C F. Defending the Maritime Transport of Cargo for the Hawaiian Islands[D]. Monterey:Naval Postgraduate School, 2011.
[14] Alderson D L, Brown G G, Carlyle W M, et al. Sometimes there is no most-vital arc:Assessing and improving the operational resilience of systems[J]. Military Operations Research, 2013, 18(1):21-37.
[15] Salmerom J, Wood K, Baldick R. Analysis of electric grid security under terrorist threat[J]. IEEE Transactions on Power Systems, 2004, 19(2):905-912.
[16] Salmerom J, Wood K, Baldick R. Worst-case interdiction analysis of largescale electric power grids[J]. IEEE Transactions on Power Systems, 2009, 24(1):96-104.
[17] Long C. Analyzing the Resilience of the US Military Fuel Distribution System for Mainland Japan[D]. Monterey:Naval Postgraduate School, 2013.
[18] Ahuja R K, Magnanti T L, Orlin J B. Network Flows:Theory, Algorithms, and Applications[M]. Englewood Cliffs:Prentice Hall, 1993.
[19] Carvalho R, Buzna L, Bono F, et al. Robustness of trans-European gas networks[J]. Physical Review E, 2009, 80(1), 016106.
[1] 沈方瑶, 戴国骏, 代成雷, 郭鸿杰, 张桦. 基于特征关联模型的广告点击率预测[J]. 清华大学学报(自然科学版), 2018, 58(4): 374-379.
[2] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 684-690.
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持