Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (6): 631-636    DOI: 10.16511/j.cnki.qhdxxb.2017.26.031
  自动化 本期目录 | 过刊浏览 | 高级检索 |
基于外扰观测器的双通道航天器姿态控制方法
徐利民, 张涛
清华大学 自动化系, 北京 100084
Dual channel spacecraft attitude control method based on an external disturbance observer
XU Limin, ZHANG Tao
Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(1353 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文提出一种基于外扰状态观测器的航天器姿态控制方法。该方法基于航天器姿态控制模型的线性形式,利用双通道控制原理,分别设计镇定补偿器和伺服补偿器解决恒值调节和随动跟踪问题,通过状态反馈实现极点配置,使系统满足给定的动态和静态指标,同时用外扰状态观测器获取干扰量估计并通过补偿通道对干扰进行抑制和消除。仿真结果表明:该系统具有良好的静态和动态特性,同时具有较强的抗干扰能力和一定的工程应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐利民
张涛
关键词 姿态控制双通道外扰观测器内模原理    
Abstract:A dual channel attitude control method was developed for rigid body spacecraft based on a disturbance state observer. A linearized attitude control dynamics and kinematics model of the spacecraft was incorporated into a dual channel control system with a stabilization compensator controller and a servo compensator to adjust the control variables for servo tracking. The system poles are reassigned by state feedback to satisfy the given dynamic and static indicators, while estimated values of the interference obtained by the disturbance state observer are fed back via a compensating channel to the input to suppress disturbances. Simulations confirm that this control method has excellent static and dynamic properties and strong anti-interference ability.
Key wordsattitude control    dual channel    disturbance observer    internal model principle
收稿日期: 2016-12-12      出版日期: 2017-06-15
ZTFLH:  V448.2  
通讯作者: 张涛,教授,E-mail:taozhang@tsinghua.edu.cn     E-mail: taozhang@tsinghua.edu.cn
引用本文:   
徐利民, 张涛. 基于外扰观测器的双通道航天器姿态控制方法[J]. 清华大学学报(自然科学版), 2017, 57(6): 631-636.
XU Limin, ZHANG Tao. Dual channel spacecraft attitude control method based on an external disturbance observer. Journal of Tsinghua University(Science and Technology), 2017, 57(6): 631-636.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.031  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I6/631
  图1 姿态控制系统模型
  图2 系统线性模型结构
  图3 双通道控制系统结构
  图4 带补偿器的输出反馈闭环系统
  表1 系统仿真参数
  图5 外扰精确已知时系统输出误差
  图6 外扰状态观测器重建外扰和角速度信息的输出误差
  图7 偏航、滚动与俯仰方向的角速度估计误差
  图8 w的实际值、观测值及误差曲线
  图9 系统长期运行过程w的实际值、观测值及误差曲线
[1] Sidi M J. Spacecraft Dynamics and Control[M]. London:Cambridge University Press, 2000.
[2] 吴宏鑫, 沈少萍. PID控制的应用与理论依据[J]. 控制工程, 2003, 10(1):37-42. WU Hongxin, SHEN Shaoping.Basis of theory and applications on PID control[J].Control Engineering of China.2003, 10(1):37-42. (in Chinese)
[3] Choongseok O, Hyochoong B, Jong-Oh P. Vibration control of flexible spacecraft under attitude maneuver using adaptive controller[C]//AIAA Guidance Navigation and Control Conference and Exhibit. KeyStone, CO, USA:AIAA, 2006:1-20.
[4] 魏凤美, 赵育善, 师鹏. 挠性航天器姿态机动的变论域自整定模糊PID控制[J]. 中国空间科学技术, 2014, 35(6):1-7.WEI Fengmei, ZHAO Yushan, SHI Peng.Variable universe self-tuning fuzzy PID controller of attitude maneuver for flexible spacecraft[J]. Chinese Space Science and Technplogy, 2014, 35(6):1-7. (in Chinese)
[5] Biannic J, Roos C, Pittet C. Linear parameter varying analysis of switched controllers for attitude control systems[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5):1561-1567.
[6] Titus H, Cooper C, Fallon M. Minimum time & fuel & sliding mode controllers for spacecraft attitude control[C]//Space Programs & Technologies Conference & Exhibit. Huntsville, AL, USA:AIAA, 1994:1-6.
[7] James M, Yuri S. A sliding mode controller and observer for satellite attitude control[C]//AIAA Guidance, Navigation, and Control Conference. New Orleans, AL, USA:AIAA, 1997:1613-1619.
[8] 孙兆伟, 邬树楠, 李晖. 带有干扰观测器的凝视航天器姿态变结构控制[J]. 哈尔滨工业大学学报, 2010, 42(9):1374-1378. SUN Zhaowei, WU Shunan, LI Hui. Variable structure attitude control of staring mode spacecraft with disturbance observer[J]. Journal of Harbin Institute of Technology, 2010, 42(9):1374-1378. (in Chinese)
[9] Abdellatif B, Karim F M, Arezki S M M. Robust attitude control using fuzzy sliding mode for LEO micro-satellite[J]. International Review of Automatic Control (Theory and Applications), 2012, 2(5):247-254.
[10] 马克茂. 大型空间飞行器的高阶滑模姿态控制律设计[J]. 控制与决策, 2013, 19(2):201-204.MA Kemao. Design of higher order sliding mode attitude control laws for large-scale spacecraft[J].Control and Decision.2013, 19(2):201-204. (in Chinese)
[11] 党宏涛, 伊国兴, 李清华. 基于有向图的航天器编队飞行自适应姿态协同控制[J]. 导航定位与授时, 2015, 2(2):7-12.DANG Hongtao, YI Guoxing, LI Qinghua.Adaptive attitude cooperative control for spacecraft formation flying under directed communication topology[J].Navigation Positioning and Timing, 2015, 2(2):7-12. (in Chinese)
[12] 胡庆雷, 马广富. 基于变结构/输入成形的航天器振动抑制方法[J]. 哈尔滨工业大学学报, 2006, 38(10):1769-1772. HU Qinglei, MA Guangfu.Flexible spacecraft attitude maneuvering and vibration damping using variable structure control input shaping[J]. Journal of Harbin Institute of Technology.2006, 38(10):1769-1772. (in Chinese)
[13] Guan P, Liu X J, Liu J Z. Adaptive fuzzy sliding mode control for flexible satellite[J]. Engineering Applications of Artificial Intelligence, 2005, 18(4):451-459.
[14] Catherine C. H<sub>∞</sub> controller design and m-analysis:Powerful tools for flexible satellite attitude control[C]//AIAA Guidance Navigation and Control Conference. Toronto, Canada:AIAA, 2010:1-14.
[15] Bellar A, Fellah M K, Mohammed M A S. A cold gas thruster micro satellite attitude control[J]. Revue Roumaine Des Sciences Techniques-Serie Electro Technique et Energetique, 2013, 58(4):395-404.
[16] Li J, Post M, Lee R. Real-time nonlinear attitude control system for Nano-satellite applications[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1661-1671.
[17] Christopher P, Matthew K, David M, et al. High-precision pointing and attitude determination and control on Exo-planet Sat[C]//AIAA Guidance, Navigation, and Control Conference. Portland, OR, USA:AIAA, 2011:1-24.
[18] 章仁为. 卫星轨道姿态动力学与控制[M]. 北京:北京航空航天大学出版社, 1998.ZHANG Renwei. Satellite Orbit Attitude Dynamics and Control[M]. Beijing:Beijing University of Aeronautics and Astronautics Press, 1998. (in Chinese)
[19] 吴麒. 自动控制原理[M]. 北京:清华大学出版社, 2006. WU Qi. Principles of Automatic Control[M]. Beijing:Tsinghua University Press.2006. (in Chinese)
[1] 陶佳伟, 张涛. 考虑控制受限的近距离星间相对姿轨耦合控制[J]. 清华大学学报(自然科学版), 2018, 58(3): 311-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn