Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (9): 926-931    DOI: 10.16511/j.cnki.qhdxxb.2017.26.042
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
基于联合模型的商品口碑数据情感挖掘
王素格1,2, 李大宇1, 李旸1
1. 山西大学 计算机与信息技术学院, 太原 030006;
2. 山西大学 计算智能与中文信息处理教育部重点实验室, 太原 030006
Sentiment mining of commodity reputation data based on joint model
WANG Suge1,2, LI Dayu1, LI Yang1
1. School of Computer & Information Technology, Shanxi University, Taiyuan 030006, China;
2. Key Laboratory of Computational Intelligence and Chinese Information Processing of Ministry of Education, Shanxi University, Taiyuan 030006, China
全文: PDF(982 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了同时挖掘商品口碑数据中所谈论的对象、对象的某个方面以及评论者对这个方面的观点,用于指导消费者消费和生产厂家对商品的改进,该文面向口碑数据提出一个无监督对象方面情感联合模型。该模型假设方面分布依赖于对象分布,情感分布依赖于方面分布和对象分布,词是采样的最小单位。在汽车口碑数据上进行了多组实验,实验结果表明:无监督对象方面情感联合模型不仅可以判别文本方面和文本情感的类别,还可以获取文本对象信息。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王素格
李大宇
李旸
关键词 口碑数据联合模型情感挖掘无监督学习    
Abstract:This paper presents a probabilistic graphical model to simultaneously extract objects, aspects and sentiments from commodity reputation data. The underlying assumption is that the aspect distribution depends on the object distribution, while the sentiment distribution depends on the aspect distribution. The model further assumes that words are the smallest sampling units and is fully unsupervised. Tests on car reputation data show that this model can predict the aspect and sentiment categories of commodity reviews and can simultaneously extract object information from the reviews.
Key wordscommodity reputation data    joint model    sentiment mining    unsupervised learning
收稿日期: 2016-12-06      出版日期: 2017-09-15
ZTFLH:  TP391.1  
引用本文:   
王素格, 李大宇, 李旸. 基于联合模型的商品口碑数据情感挖掘[J]. 清华大学学报(自然科学版), 2017, 57(9): 926-931.
WANG Suge, LI Dayu, LI Yang. Sentiment mining of commodity reputation data based on joint model. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 926-931.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.042  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/926
  图1 JOAS模型
  图2 不同迭代次数下的文本情感分类正确率
  表1 在不同参数下的文本对象分类、方面分类和情感分类及其联合分类正确率
  表2 方面与情感对应的词汇表
[1] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
[2] Lin C, He Y. Joint sentiment/topic model for sentiment analysis[C]//Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2009:375-384.
[3] He Y, Lin C, Alani H. Automatically extracting polarity-bearing topics for cross-domain sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies-Volume 1. Stroudsburg, PA, USA:Association for Computational Linguistics, 2011:123-131.
[4] Lin C, He Y, Everson R, et al. Weakly supervised joint sentiment-topic detection from text[J].IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6):1134-1145.
[5] Jo Y, Oh A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2011:815-824.
[6] 孙艳, 周学广, 付伟. 基于主题情感混合模型的无监督文本情感分析[J]. 北京大学学报(自然科学版), 2013, 49(1):102-108.SUN Yan, ZHOU Xueguang, FU Wei. Unsupervised topic and sentiment unification model for sentiment analysis[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013, 49(1):102-108. (in Chinese)
[7] Li F, Huang M, Zhu X. Sentiment analysis with global topics and local dependency[C]//Twenty-Fourth AAAI Conference on Artificial Intelligence. Hamilton, Canada:AAAI, 2010:1371-1376.
[8] Moghaddam S, Ester M. On the design of LDA models for aspect-based opinion mining[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York, NY, USA:ACM, 2012:803-812.
[9] Titov I, McDonald R T. A joint model of text and aspect ratings for sentiment summarization[C]//The 46th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg, PA, USA:Association for Computational Linguistics, 2008:308-316.
[10] Titov I, McDonald R. Modeling online reviews with multi-grain topic models[C]//Proceedings of the 17th International Conference on World Wide Web. New York, NY, USA:ACM, 2008:111-120.
[11] Chen Z, Mukherjee A, Liu B. Aspect extraction with automated prior knowledge learning[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA:Association for Computational Linguistics, 2014:347-358.
[12] Wu Y, Ester M. FLAME:A probabilistic model combining aspect based opinion mining and collaborative filtering[C]//Proceedings of the Eighth ACM International Conference on Web Search and Data Mining. New York, NY, USA:ACM, 2015:199-208.
[13] Mcauley J, Pandey R, Leskovec J. Inferring networks of substitutable and complementary products[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2015:785-794.
[14] Walsh B. Markov chain Monte Carlo and Gibbs sampling[J]. Notes, 2004, 91(8):497-537.
[15] 冯淑芳, 王素格. 面向观点挖掘的汽车评价本体知识库的构建[J]. 计算机应用与软件, 2011, 28(5):45-47.FENG Shufang, WANG Suge. Automobile reviews ontology knowledge base construction oriented towards opinion mining[J]. Computer Applications & Software, 2011, 28(5):45-47. (in Chinese)
[1] 贾鹏, 王平辉, 陈品安, 陈奕超, 何诚, 刘炯宙, 管晓宏. 基于无监督学习的智能数据中心电力拓扑系统[J]. 清华大学学报(自然科学版), 2023, 63(5): 730-739.
[2] 杨倩文, 孙富春. 基于泛化空间正则自动编码器的遥感图像识别[J]. 清华大学学报(自然科学版), 2018, 58(2): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn