Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (9): 952-957    DOI: 10.16511/j.cnki.qhdxxb.2017.26.046
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于伪影模板的术后电极定位方法
李波1,2, 姜长青1, 张锋1, 李路明1,3, 马羽4
1. 清华大学 神经调控技术国家工程实验室, 北京 100084;
2. 中国人民解放军62191部队, 渭南 714100;
3. 北京脑重大疾病研究院 癫痫研究所, 北京 100093;
4. 清华大学 玉泉医院, 神经外科, 北京 100039
Localization method for postoperative electrodes based on an artifacts template
LI Bo1,2, JIANG Changqing1, ZHANG Feng1, LI Luming1,3, MA Yu4
1. National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing 100084, China;
2. Unit 62191 of the People's Liberation Army, Weinan 714100, China;
3. Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100093, China;
4. Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100039, China
全文: PDF(3198 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 术后电极位置及轨迹信息是脑深部刺激临床疗效评估的有效工具,但是核磁图像中电极伪影严重地影响了术后电极位置的准确估计。该文提出基于核磁图像电极伪影估计术后电极位置的方法,进而确定电极与靶点核团之间的位置关系,有助于明确治疗疗效与电极定位之间的联系,更好地指导外科医生规划最佳植入通路和程控。进行了电极伪影体模实验和分析了10名帕金森病患者脑部核磁图像,结果表明:该方法可以测量电极在丘脑底核中的位置,并具有较小测量误差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李波
姜长青
张锋
李路明
马羽
关键词 伪影脑深部刺激电极定位    
Abstract:The therapeutic benefits are strongly related to the location accuracy of the deep brain stimulation (DBS) electrodes in the target. The postoperative electrode positions cannot be accurately located because of their artifacts. An electrode position estimation method was developed using the artifacts to judge the electrode position relative to the target nucleus to improve the therapeutic effect and the electrode positioning and to help neurosurgeons prepare appropriate surgery plans. Magnetic resonance imaging (MRI) data for artifact locations in a phantom and in 10 Parkinson's disease (PD) patients using a correlation coefficient show that this method can accurately measure the electrode position with a predictable error.
Key wordsartifact    deep brain stimulation    electrode localization
收稿日期: 2017-02-23      出版日期: 2017-09-15
ZTFLH:  R445.2  
通讯作者: 李路明,教授,E-mail:lilm@tsinghua.edu.cn     E-mail: lilm@tsinghua.edu.cn
引用本文:   
李波, 姜长青, 张锋, 李路明, 马羽. 基于伪影模板的术后电极定位方法[J]. 清华大学学报(自然科学版), 2017, 57(9): 952-957.
LI Bo, JIANG Changqing, ZHANG Feng, LI Luming, MA Yu. Localization method for postoperative electrodes based on an artifacts template. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 952-957.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.046  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/952
  表1 几种材料的磁化率[10]
  图1 电极伪影模板建立过程
  图2 电极位置
  图3 坐标系O 与O1 的位置关系
  图4 伪影模板和实际图像的相关性检验过程
  表2 丘脑底核实际位置与估计位置
  图5 距离比较结果
  图6 电极伪影区域面积变化
  图7 实验伪影与仿真计算伪影中心位置比较
[1] Benabid A L, Chabardes S, Mitrofanis J, et al. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease[J]. Lancet Neurol, 2009, 8(1):67-81.
[2] Counelis G J, Simuni T, Forman M S, et al. Bilateral subthalamic nucleus deep brain stimulation for advanced PD:Correlation of intraoperative MER and postoperative MRI with neuropathological findings[J]. Movement Disorders, 2003, 18(9):1062-1065.
[3] Sch necker T, Gruber D, Kivi A, et al. Postoperative MRI localisation of electrodes and clinical efficacy of pallidal deep brain stimulation in cervical dystonia[J]. Journal of Neurology Neurosurgery & Psychiatry, 2015, 86(8):833-839.
[4] Pinsker M O, Volkmann J, Falk D, et al. Electrode implantation for deep brain stimulation in dystonia:A fast spin-echo inversion-recovery sequence technique for direct stereotactic targeting of the GPI[J]. Zentralbl Neurochir, 2008, 69(2):71-75.
[5] Horn A, Kühn A A. Lead-DBS:A toolbox for deep brain stimulation electrode localizations and visualizations[J]. Neuroimage, 2015, 107:127-135.
[6] Costa L F, Appenzeller S, Yasuda C L, et al. Artifacts in brain magnetic resonance imaging due to metallic dental objects[J]. Med Oral Patol Oral Cir Bucal, 2009, 14(6):278-82.
[7] Balac S, Caloz G, Cathelineau G, et al. Integral method for numerical simulation of MRI artifacts induced by metallic implants[J]. Magnetic Resonance in Medicine, 2001, 45(4):724-727.
[8] JIANG Changqing, LI Luming, HAO Hongwei. Carbon nanotube yarns for deep brain stimulation electrode[J]. IEEE Trans Neural Syst Rehabil Eng, 2011, 19(6):612-616.
[9] JIANG Changqing, HAO Hongwei, LI Luming. Artifact properties of carbon nanotube yarn electrode in magnetic resonance imaging[J]. J Neural Eng, 2013, 10(2), 026013.
[10] Schenck J F. The role of magnetic susceptibility in magnetic resonance imaging:MRI magnetic compatibility of the first and second kinds[J]. Medical physics, 1996, 23(6):815-850.
[11] Leclet H. Artifacts in magnetic resonance imaging of the spine after surgery with or without implant[J]. European Spine Journal, 1994, 3(5):240-245.
[12] Balac S, Caloz G. Induced magnetic field computations using a boundary integral formulation[J]. Applied Numerical Mathematics, 2002, 41(3):345-367.
[13] Sthphane B, Gabriel C. Magnetic susceptibility artifacts in magnetic resonance imaging:Calculation of the magnetic field disturbances[J]. IEEE Transactions on Magnetics, 1996, 32(3):1645-1648.
[14] Ericssont A, Hemmingssont A, Jung B, et al. Calculation of MRI artifacts caused by static field disturbances[J]. Phys Med Biol, 1988, 33(10):1103-1112.
[15] Jackson J D. Classical Electrodynamics[M]. Third Edition. New York:Wiley, 1998.
[16] Port J D, Pomper M G. Quantification and minimization of magnetic susceptibility artifacts on GRE images[J]. Journal of Computer Assisted Tomography, 2000, 24(6):958-964.
[17] Starr P A. Placement of deep brain stimulators into the subthalamic nucleus and globus pallidus internus:Technical approach[J]. Stereotact Funct Neurosurg, 2002, 79:118-145.
[1] 程李, 刘帆, 高丽蕾, 刘辉, 刘亚强. 碘-131 SPECT平片成像伪影校正算法[J]. 清华大学学报(自然科学版), 2023, 63(5): 802-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn