Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (9): 975-979    DOI: 10.16511/j.cnki.qhdxxb.2017.26.050
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于PSO优化LS-SVM的刀具磨损状态识别
刘成颖1,3, 吴昊2, 王立平1,3, 张智4
1. 清华大学 机械工程系, 北京 100084;
2. 电子科技大学 机械电子工程学院, 成都 611731;
3. 清华大学 精密超精密制造装备及控制北京市重点实验室, 北京 100084;
4. 海军航空工程学院 飞行器工程系, 烟台 264001
Tool wear state recognition based on LS-SVM with the PSO algorithm
LIU Chengying1,3, WU Hao2, WANG Liping1,3, ZHANG Zhi4
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
3. Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing 100084, China;
4. Department of Aircraft Engineering, Navy Aeronautical Engineering Academy, Yantai 264001, China
全文: PDF(1378 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为监测刀具的磨损状态,该文建立了一个基于声发射的刀具磨损状态监测系统。在刀具磨损状态监测实验中,采集加工过程中的声发射信号,提取方根幅值、绝对值均值、均方根、最大值作为反映刀具磨损的时域特征值。针对人工神经网络容易陷入局部极小值、结构难以确定、学习收敛速度慢等缺点,提出最小二乘支持向量机(least square support vector machine,LS-SVM)的刀具磨损状态识别方法。针对LS-SVM性能依赖于惩罚因子和核参数,利用粒子群优化(particle swarm optimization,PSO)算法对LS-SVM参数进行自动寻优,建立PSO优化LS-SVM模型进行刀具磨损状态识别。结果表明:与LS-SVM识别模型相比,优化后的LS-SVM模型具有更高的识别率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘成颖
吴昊
王立平
张智
关键词 刀具状态识别时域特征值最小二乘支持向量机(LS-SVM)粒子群优化(PSO)算法    
Abstract:A tool wear state monitoring system was developed based on acoustic emissions to monitor the tool wear state. Typical acoustic signals were analyzed to determine the square root amplitude, absolute mean, mean square error and maximum sound level from the time domain to characterize the tool wear. Neural networks can easily fall into a local minimum and have slow learning convergence rates so a tool wear state recognition method was developed based on a least square support vector machine (LS-SVM). The LS-SVM performance depends on the penalty factor and the kernel parameter, so a particle swarm optimization algorithm was used to automatically optimize the LS-SVM parameters. The optimized LS-SVM model is then shown to be more accurate than the basic LS-SVM model.
Key wordstool wear condition recognition    time domain feature    least square support vector machine (LS-SVM)    particle swarm optimization (PSO) algorithm
收稿日期: 2017-01-10      出版日期: 2017-09-15
ZTFLH:  TP277  
引用本文:   
刘成颖, 吴昊, 王立平, 张智. 基于PSO优化LS-SVM的刀具磨损状态识别[J]. 清华大学学报(自然科学版), 2017, 57(9): 975-979.
LIU Chengying, WU Hao, WANG Liping, ZHANG Zhi. Tool wear state recognition based on LS-SVM with the PSO algorithm. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 975-979.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.050  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/975
  表1 时域信号的统计参数及表达式
  图1 算法流程图
  图2 刀具磨损实验系统
  图3 时域特征参数与刀具磨损之间的关系
  表2 PSO 参数设置
  图4 测试样本预测结果
  表3 PSOGLSGSVM 与LSGSVM 的识别率比较
[1] Abellan-Nebot J V, Subirón F R. A review of machining monitoring systems based on artificial intelligence process models[J]. The International Journal of Advanced Manufacturing Technology, 2010, 47(1):237-257.
[2] 高宏力. 切削加工过程中刀具磨损的智能监测技术研究[D]. 成都:西南交通大学, 2005.GAO Hongli. The Investigation of Intelligent Tool Wear Monitoring Techniques for Metal Cutting Process[D]. Chengdu:Southwest Jiaotong University. 2005. (in Chinese)
[3] 关山. 基于声发射信号多特征分析与融合的刀具磨损分类与预测技术[D]. 长春:吉林大学, 2011.GUAN Shan. Technology of Classification and Forecast of Tools Wear Based on Multi-feature Analysis and Fusion of AE[D].Changchun:Jilin University, 2011.(in Chinese)
[4] Özel T, Karpat Y. Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks[J]. International Journal of Machine Tools & Manufacture, 2005, 45(4-5):467-479.
[5] 陈爱弟, 王信义, 王忠民. 基于模糊聚类的刀具磨损量在线监测方法[J]. 北京理工大学学报, 2000, 20(3):276-280.CHEN Aidi, WANG Xinyi, WANG Zhongmin. A method of online monitoring tool wear based on fuzzy classification[J]. Journal of Beijing Institute of Technology, 2000, 20(3):276-280. (in Chinese)
[6] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3):293-300.
[7] 杨先勇, 周晓军, 张文斌,等. 基于局域波法和KPCA-LSSVM的滚动轴承故障诊断[J]. 浙江大学学报(工学版), 2010, 44(8):1519-1524.YANG Xianyong, ZHOU Xiaojun, ZHANG Wenbing, et al. Rolling bearing fault diagnosis based on local wave method and KPAC-LSSVM[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(8):1519-1524(in Chinese)
[8] Heidari M, Homaei H, Golestanian H, et al. Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform[J]. Journal of Vibroengineering, 2016, 18(2):860-875.
[9] Liu Z, Cao H, Chen X, et al. Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings[J]. Neurocomputing, 2013, 99(1):399-410.
[10] 李威霖, 傅攀, 张尔卿. 基于粒子群优化LS-SVM的车刀磨损量识别技术研究[J]. 计算机应用研究, 2014, 31(4):1094-1097.LI Weilin, FU Pan, ZHANG Erqing. Application of particle swarm optimization-least square support vector machine in tool wear monitoring[J]. Application Research of Computers, 2014, 31(4):1094-1097. (in Chinese)
[11] Shrivastava N A, Khosravi A, Panigrahi B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2):322-331.
[12] Selakov A, Cvijetinovi Ac' D, Milovi Ac' L, et al. Hybrid PSO-SVM method for short-term load forecasting during periods with significant temperature variations in city of Burbank[J]. Applied Soft Computing, 2014, 16(3):80-88.
[1] 杨文, 赵千川. 基于能量平衡的暖通空调系统故障检测方法[J]. 清华大学学报(自然科学版), 2017, 57(12): 1272-1279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn