Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (9): 980-985    DOI: 10.16511/j.cnki.qhdxxb.2017.26.051
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
改进型流量误差反馈迭代法及其空气静压轴承应用
李雅哲, 周凯
清华大学 机械工程系, 北京 100084
Flow-difference feedback iteration method for aerostatic bearings
LI Yazhe, ZHOU Kai
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1298 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 空气静压轴承以空气作为润滑剂,尤其适用于高速应用场合。该文基于Reynolds方程,在极坐标条件下推导出止推空气静压轴承的有限差分模型。提出改进型流量误差反馈迭代法并应用于止推空气静压轴承的迭代计算中,采用伴随迭代随时更新的流量相对误差作为反馈变量,并随时修正速度因子。研究改进型流量误差迭代法的收敛特性,具体分析速度因子和迭代初值对收敛速度的影响。结果表明:迭代初值对收敛速度影响不明显,改进型方法可以增加速度因子裕度。通过研究轴承节流参数对轴承性能的影响表明:配合良好的节流孔和气隙可以显著提升轴承刚度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅哲
周凯
关键词 流量误差反馈迭代法止推空气静压轴承Reynolds方程有限差分法(FDM)    
Abstract:Aerostatic bearings using air as the lubricant are especially useful in high-speed situations. This study of aerostatic bearings used a finite difference model of an aerostatic thrust bearing in polar coordinates based on the Reynolds equation with an improved flow-difference feedback iteration method. The relative error in the flow equilibrium updated by the iteration is used as the feedback variable to rectify the convergence rate factors. The initial value does not strongly influence the convergence rate, while the improved flow-difference feedback iteration method increases the effectiveness of the convergence rate factors. An analysis of the influence of the throttle parameter on the bearing performance shows that the proper orifices and clearance significantly improve the bearing stiffness.
Key wordsflow-difference feedback iteration method    aerostatic thrust bearing    Reynolds equation    finite difference method (FDM)
收稿日期: 2017-05-24      出版日期: 2017-09-15
ZTFLH:  TH133.35  
引用本文:   
李雅哲, 周凯. 改进型流量误差反馈迭代法及其空气静压轴承应用[J]. 清华大学学报(自然科学版), 2017, 57(9): 980-985.
LI Yazhe, ZHOU Kai. Flow-difference feedback iteration method for aerostatic bearings. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 980-985.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.051  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/980
  图1 止推空气静压轴承结构
  图2 极坐标系及有限差分网格
  图3 r 方向质量流量
  图4 改进型FDFIM
  图5 不同速度因子下迭代方法的收敛特性
  图6 不同迭代初值下迭代方法的收敛特性
  表1 流量误差反馈迭代法的δ 裕度
  图7 节流孔直径对静压气体轴承承载力和刚度的影响
  图8 供气压力对静压气体轴承承载力和刚度的影响
  图9 静压轴承在不同偏心率下的承载力和刚度
[1] Powell J W. Design of Aerostatic Bearings[M]. London:Machinery Publishing, 1970.
[2] Szeri A Z. Fluid Film Lubrication:Theory and Design[M]. Cambridge:Cambridge University Press, 2005.
[3] Franssen R M, Potze W, de Jong P, et al. Large amplitude dynamic behavior of thrust air bearings:Modeling and experiments[J]. Tribology International, 2017, 109:460-466.
[4] Nicoletti R, Purquerio B D M, Silveira Z D C. The effect of permeability distribution on the numerical analysis of aerostatic ceramic porous bearings[J]. Lubrication Science, 2013, 25(2):185-194.
[5] Zhu J, Chen H, Chen X. Large eddy simulation of vortex shedding and pressure fluctuation in aerostatic bearings[J]. Journal of Fluids & Structures, 2013, 40(7):42-51.
[6] Neves M T, Schwarz V A, Menon G J. Discharge coefficient influence on the performance of aerostatic journal bearings[J]. Tribology International, 2010, 43(4):746-751.
[7] Gero L R, Ettles C M M. An evaluation of finite difference and finite element methods for the solution of the Reynolds equation[J]. Tribology Transactions, 1986, 29(2):166-172.
[8] Tala-Ighil N, Fillon M. A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics[J]. Tribology International, 2015, 90:228-239.
[9] Lo C Y, Wang C C, Lee Y H. Performance analysis of high-speed spindle aerostatic bearings[J]. Tribology International, 2005, 38(1):5-14.
[10] 刘暾, 刘育华, 陈世杰.静压气体润滑[M]. 哈尔滨:哈尔滨工业大学出版社, 1990.LIU Dun, LIU Yuhua, CHEN Shijie. Aerostatic Lubrication[M]. Harbin:Harbin Institute of Technology Press, 1990. (in Chinese)
[11] Chen Y S, Chiu C C, Cheng Y D. Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings[J]. Precision Engineering, 2010, 34(4):722-734.
[12] Li Y, Zhou K, Zhang Z. A flow-difference feedback iteration method and its application to high-speed aerostatic journal bearings[J]. Tribology International, 2014, 84:132-141.
[13] 党根茂. 气体润滑技术[M]. 南京:东南大学出版社, 1990.DANG Genmao. Technology of Gas Lubrication[M]. Nanjing:Southeast University Press, 1990. (in Chinese)
[14] Hori Y. Hydrodynamic Lubrication[M]. Berlin:Springer Science & Business Media, 2006.
[15] 王云飞. 气体润滑理论与气体轴承设计[M]. 北京:中国机械工业出版社, 1999.WANG Yunfei. Gas Lubricated Theory and Design Manual of Gas Bearings[M]. Beijing:China Machinery Industry Press, 1999. (in Chinese)
[16] Stoer J, Bulirsch R. Introduction to Numerical Analysis[M]. Berlin:Springer Science & Business Media, 2013.
[17] 张君安. 高刚度空气静压轴承研究[D]. 西安:西北工业大学, 2006.ZHANG Junan. Research on High Stiffness Aerostatic Bearing[D]. Xi'an:Northwestern Polytechnic University, 2006. (in Chinese)
[18] Zheng S F, Jiang S Y. Improved finite difference method for pressure distribution of aerostatic bearing[J]. Journal of Southeast University, 2009, 25(4):501-505.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn