Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (9): 993-998    DOI: 10.16511/j.cnki.qhdxxb.2017.26.053
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
基于轴向力自由控制的磁悬浮飞轮基座振动抑制
蒲芃成1, 张剀2, 刘平凡1, 赵雷1
1. 清华大学 核能与新能源技术研究院, 北京 100084;
2. 清华大学 工程物理系, 北京 100084
Suppression of base vibrations in a magnetically suspended flywheel system based on axial force free control
PU Pengcheng1, ZHANG Kai2, LIU Pingfan1, ZHAO Lei1
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
2. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(1865 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 高速磁悬浮飞轮壳体或机座振动是影响运行精度的关键问题。对于外转子式飞轮结构,当转子轴向基准面与转子旋转轴线之间的垂直度精度在一定范围内时,这种形位误差会导致额外的基座振动。基座的同频振动幅值由转子自身的残余不平衡和位移传感器测量面的形位误差同时决定。因此,该文在传统力自由控制基础上提出了轴向力自由控制方法对基座的轴向振动进行抑制。通过实验比较了不开启不平衡控制、仅开启径向不平衡控制和同时开启径向、轴向不平衡控制3种情况,验证了在转子各自由度同时开启不平衡控制能更有效地减小基座振动。实验结果表明:在工作转速下,该方法能有效地消除转子轴向的同频振动力,抑制基座振动。同时,也证明了在承担重力方向同样也能实现力自由控制,与磁轴承仅有径向力自由的不平衡控制方法相比,拓宽了不平衡力自由控制方法的应用领域,取得了较好的振动控制效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒲芃成
张剀
刘平凡
赵雷
关键词 磁悬浮飞轮形位误差力自由控制    
Abstract:Vibrations of the housing or base is one of the key problems influencing the running accuracy of high-speed magnetic suspended flywheels. Flywheel rotors with an outer-rotor structures have geometrical errors that cause base vibrations when the angle between the normal to the axial reference plane and the rotor spinning axis is within a specific range. The amplitude of synchronous vibrations of the base is mainly determined by the rotor unbalance and geometric error in the measurement plane of the displacement sensor. Base vibrations are suppressed here by an axial force free control method based on conventional force free control. Three controllers were analyzed in tests with no unbalanced control, only radial unbalance control and radial-axial unbalance control. The unbalanced control simultaneously acts on differ degrees of freedom of the rotor to more effectively suppress the base vibrations. Tests show that, at full operating speed, the control method effectively eliminates axial synchronous vibrations in the rotor and then suppresses base vibrations. Force free control can also be applied in the direction of gravity. This axial force free control achieves better vibration suppression performance and has wider applications field than conventional force free control of magnetic bearing
Key wordsmagnetically suspended flywheel    geometrical error    force free control
收稿日期: 2016-11-11      出版日期: 2017-09-15
ZTFLH:  TH133.3  
通讯作者: 赵雷,教授,E-mail:zhaolei@tsinghua.edu.cn     E-mail: zhaolei@tsinghua.edu.cn
引用本文:   
蒲芃成, 张剀, 刘平凡, 赵雷. 基于轴向力自由控制的磁悬浮飞轮基座振动抑制[J]. 清华大学学报(自然科学版), 2017, 57(9): 993-998.
PU Pengcheng, ZHANG Kai, LIU Pingfan, ZHAO Lei. Suppression of base vibrations in a magnetically suspended flywheel system based on axial force free control. Journal of Tsinghua University(Science and Technology), 2017, 57(9): 993-998.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.053  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I9/993
  图1 磁悬浮高速飞轮结构
  图2 自适应陷波器
  图3 理想无形位误差的转子结构
  图4 实际存在形位误差的转子结构(放大)
  图5 转子轴向位移测量面α>0,α<0
  图6 转子轴向位移测量面α>0,α>0
  表1 磁悬浮飞轮系统主要系统参数
  图7 磁悬浮高速飞轮实验系统
  图8 启动径向不平衡补偿控制前、后飞轮基座径向振动
  图9 启动轴向不平衡补偿控制前、后飞轮基座轴向振动
[1] Xie Y C, Sawada H, Hashimoto T, et al. Adaptive model following control method for actively controlled magnetic bearing momentum wheel[C]//Proceedings of the 5th International Symposium on Magnetic Suspension Technology. Santa Barbara, CA, USA:NASA, 1999:547-561.
[2] 房建成, 孙津济, 樊亚洪等. 磁悬浮惯性动量轮技术[M]. 北京:国防工业出版社, 2012.FANG Jiancheng, SUN Jinji, FAN Yahong, et al. Magnetically Suspended Inertial Momentum Wheel Technology[M]. Beijing:National Defense Industry Press, 2012. (in Chinese)
[3] Bleuler H, Cole M, Keogh P, et al. Magnetic Bearings:Theory, Design, and Application to Rotating Machinery[M]. Berlin, Heidelberg:Springer-Verlag, 2009.
[4] 张剀, 张小章. 磁轴承不平衡控制技术的研究进展[J]. 中国机械工程, 2010, 21(8):897-903.ZHANG Kai, ZHANG Xiaozhang. A review of unbalance control technology of active magnetic bearings[J]. China Mechanical Engineering, 2010, 21(8):897-903. (in Chinese)
[5] Habermann H, Brunet M. The active magnetic bearing enables optimum damping of flexible rotor[C]//ASME 1984 International Gas Turbine Conference. Amsterdam, Holland:ASME, 1984, 84-GT-117.
[6] Herzog R, Buhler P, Gahler C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):580-586.
[7] Shi J, Zmood R, Qin L J. The direct method for adaptive feed-forward vibration control of magnetic bearing systems[C]//Proceedings of 7th International Conference on Control, Automation, Robotics and Vision. Marina Mandarin, Singapore:IEEE Press, 2002:675-680.
[8] 黄晓蔚, 唐钟麟. 电磁轴承系统实现自动平衡的一种新方法[J]. 机械工程学报, 2001, 37(7):96-99.HUANG Xiaowei, TANG Zhonglin. New method for autobalancing with active magnetic bearings[J]. Chinese Journal of Mechanical Engineering, 2001, 37(7):96-99. (in Chinese)
[9] Sivrioglu S, Nonami K. LMI approach to gain scheduled H/sub/spl infin//control beyond PID control for gyroscopic rotor-magnetic bearing system[C]//Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan:IEEE Press, 1996:3694-3699.
[10] Matsumura F, Namerikawa T, Hagiwara K, et al. Application of gain scheduled H/sub/spl infin//robust controllers to a magnetic bearing[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):484-493.
[11] Mohamed A M, Hassan I M M, Hashem A M K. Application of discrete-time gain-scheduled q-parameterization controllers to magnetic bearing systems with imbalance[C]//Proceedings of The American Control Conference. San Diego, CA, USA:IEEE Press, 1999:598-602.
[12] Mohamed A M, Matsumura F, Namerikawa T, et al. Q-parameterization control of vibrations in a variable speed magnetic bearing[C]//Proceedings of the 1997 IEEE International Conference on Control Applications. Hartford, CT, USA:IEEE Press, 1997:540-546.
[1] 李雅哲, 周凯. 改进型流量误差反馈迭代法及其空气静压轴承应用[J]. 清华大学学报(自然科学版), 2017, 57(9): 980-985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn