Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (11): 1163-1169    DOI: 10.16511/j.cnki.qhdxxb.2017.26.061
  环境科学与工程 本期目录 | 过刊浏览 | 高级检索 |
基于离散选择模型的北京市工业疏解环境影响
李天魁1, 刘毅1, 王超然1, 汪自书1,2
1. 清华大学 环境学院, 北京 100084;
2. 北京清控人居环境研究院, 北京 100084
Environmental impact of Beijing's industrial decentralization based on a discrete choice modeling approach
LI Tiankui1, LIU Yi1, WANG Chaoran1, WANG Zishu1,2
1. School of Environment, Tsinghua University, Beijing 100084, China;
2. Tsinghua Holdings Human Settlements Environment Institute, Beijing 100084, China
全文: PDF(1079 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 疏解非首都核心功能将对整个京津冀地区资源环境压力分布空间格局产生重要影响。该文从政策、经济、资源环境3个维度识别了潜在的疏解工业门类,通过Monte Carlo方法确定企业个体规模,运用离散选择模型,综合考虑区位因素、产业资源环境效率等变量,识别了首都重点行业潜在的疏解承接地,并结合企业规模-资源环境效率水平函数,预测京津冀地区的资源环境压力空间变化。结果表明:"十三五"期间,非首都核心功能疏解将会造成北京市工业产值下降7%,主要资源消耗和污染物排放量减少9%以上,能有效缓解北京市水环境压力;京津冀区域除北京外其他地区工业产值平均增长5%左右,显著大于疏解产业带来的资源消耗与污染物排放增长。最后结合各地现有环境压力与承载力,提出了差别化的政策建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李天魁
刘毅
王超然
汪自书
关键词 非首都核心功能疏解产业转移离散选择模型资源环境影响    
Abstract:The ‘Non-Capital Functions’ dispersion policy is significantly affecting the spatial distribution of resources and the environmental in the Beijing-Tianjin-Hebei Region. This study estimates the changes in resource use and emissions at a regional level. The study classifies industrial sectors through a screening analysis of their policies, economics and environmental effects. The Monte Carlo method is used to determine individual firm sizes. A discrete choice model is used with location information and local environmental efficiencies. Relationships between the industrial size and the resource use and emission intensities are used to estimate the environmental impacts. The results show that during "the thirteenth five-year" plan, the industrial output in Beijing will decreases by 7%, while resource use and pollutant emissions will fall by over 9%, which will effectively alleviate water shortages in Beijing. In other cities in the region, the industrial output will rise by 5% on average, far more than the resource use and emissions increases. Various policy recommendations are presented to improve local environmental regulations.
Key wordscapital industrial decentralization    industrial reallocation    discrete choice model    environmental impact
收稿日期: 2017-05-21      出版日期: 2017-11-15
ZTFLH:  X820.3  
通讯作者: 刘毅,教授,E-mail:yi.liu@tsinghua.edu.cn     E-mail: yi.liu@tsinghua.edu.cn
引用本文:   
李天魁, 刘毅, 王超然, 汪自书. 基于离散选择模型的北京市工业疏解环境影响[J]. 清华大学学报(自然科学版), 2017, 57(11): 1163-1169.
LI Tiankui, LIU Yi, WANG Chaoran, WANG Zishu. Environmental impact of Beijing's industrial decentralization based on a discrete choice modeling approach. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1163-1169.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.061  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I11/1163
  表1 疏解工业行业企业规模对数正态分布特征值
  表2 离散选择模型中工业行业选址区位因素参数βi 估计值
  表3 各行业平均疏解规模
  表4 产业疏解对京津冀各城市经济与资源环境影响
  图1 主要污染物新增排放量与现状比较
[1] He C F, Wei Y H D, Xie X Z. Globalization, institutional change, and industrial location:Economic transition and industrial concentration in China[J]. Regional Studies, 2008, 7(42):923-945.
[2] Thun E. Keeping up with the Jones':Decentralization, policy imitation, and industrial development in China[J]. World Development, 2004, 32(8):1289-1308.
[3] Isabel Escalona-Orcao A, Climent-Lopez E A. Factors and limits of interurban industrial decentralization the case of Zaragoza (Spain)[J]. European Urban and Regional Studies, 2012, 19(4):420-433.
[4] 李玲, 陈迅. 重庆劣势产业选择研究[J]. 数学的实践与认识, 2006(8):70-75. LI Ling, CHEN Xun. Study on the selection of inferior position industries in Chongqing[J]. Mathematics in Practice and Theory, 2006(8):70-75. (in Chinese)
[5] Callens I, Tyteca D. Towards indicators of sustainable development for firms:A productive efficiency perspective[J]. Ecological Economics, 1999, 28(1):41-53.
[6] Laursen K. Revealed comparative advantage and the alternatives as measures of international specialization[J]. Eurasian Business Review, 2015, 5(1):99-115.
[7] Levchenko A A, Zhang J. The evolution of comparative advantage:Measurement and welfare implications[J]. Journal of Monetary Economics, 2016, 78:96-111.
[8] Gurgul H, Lach ?. Simulating evolution of interindustry linkages in endogenous dynamic IO model with layers of techniques[J]. Metroeconomica, 2016, 67(4):632-666.
[9] Luo J. Which industries to bail out first in economic recession? Ranking US industrial sectors by the Power-of-Pull[J]. Economic Systems Research, 2013, 25(2):157-169.
[10] Nishimizu M, Page J M. Total factor productivity growth, technological progress and technical efficiency change:Dimensions of productivity change in Yugoslavia, 1965-78[J]. The Economic Journal, 1982, 92(368):920-936.
[11] Simon H A, Bonini C P. The size distribution of business firms[J]. The American Economic Review, 1958, 48(4):607-617.
[12] Hausman J, Mcfadden D. Specification tests for the multinomial logit model.[J]. Econometrica, 1984, 52(5):1219-1240.
[13] Kabatek J, Van Soest A, Stancanelli E. Income taxation, labour supply and housework:A discrete choice model for French couples[J]. Labour Economics, 2014, 27:30-43.
[14] Ida T, Goto R. Interdependency among addictive behaviours and time/risk preferences:Discrete choice model analysis of smoking, drinking, and gambling[J]. Journal of Economic Psychology, 2009, 30(4):608-621.
[15] Wang C, Xie D, Liu Y. Regional industrial growth and environmental impacts in the Bohai Sea rim region of China:Uncertainty in location choice[J]. Regional Environmental Change, 2016, 16(5):1363-1374.
[16] Lovreglio R, Borri D, Dell O L, et al. A discrete choice model based on random utilities for exit choice in emergency evacuations[J]. Safety Science, 2014, 62:418-426.
[17] Haaf C G, Michalek J J, Morrow W R, et al. Sensitivity of vehicle market share predictions to discrete choice model specification[J]. Journal of Mechanical Design, 2014, 136(12):121402.
[18] Rasciute S, Pentecost E, Ferrett B. Firm heterogeneity in modelling foreign direct investment location decisions[J]. Applied Economics, 2014, 46(12):1350-1360.
[19] Bodenmann B R, Axhausen K W. Effects and side effects of measures to attract firms-A micro-Simulation study of firm location choice[J]. disP-The Planning Review, 2012, 48(4):14-28.
[20] Jindra B, Hassan S S, Cantner U. What does location choice reveal about knowledge-seeking strategies of emerging market multinationals in the EU?[J]. International Business Review, 2016, 25(1):204-220.
[21] Talluri K, Van Ryzin G. Revenue management under a general discrete choice model of consumer behavior[J]. Management Science, 2004, 50(1):15-33.
[22] Lundvall K, Battese G E. Firm size, age and efficiency:Evidence from Kenyan manufacturing firms[J]. The Journal of Development Studies, 2000, 36(3):146-163.
[23] 北京市统计局. 北京市统计年鉴[EB/OL].[2017-5-10]. http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. Bureau of Statistics of Beijing. Beijing Statistical Yearbook[EB/OL].[2017-5-10]. http://www.bjstats.gov.cn/nj/main/2015-tjnj/zk/indexch.htm. (in Chinese)
[24] 中华人民共和国国家统计局. 中国统计年鉴[EB/OL].[2017-5-10]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. National Bureau of Statistics of China. China Statistical Yearbook[EB/OL].[2017-5-10]. http://www.stats.gov.cn/tjsj/ndsj/2015/indexch.htm. (in Chinese)
[1] 郇宁, 姚恩建. 城际组合出行行为建模及应用研究进展[J]. 清华大学学报(自然科学版), 2022, 62(7): 1112-1120.
[2] 潘文卿, 吴添. 基于FC模型的产业转移的福利效应三地区理论模型[J]. 清华大学学报(自然科学版), 2014, 54(5): 672-677.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn