Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (11): 1207-1211    DOI: 10.16511/j.cnki.qhdxxb.2017.26.063
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
海上风电吸力桶基础地震分析
杨春宝1,2, 张建民1,2, 王睿1,2
1. 清华大学 土木水利学院岩土工程研究所, 北京 100084;
2. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Seismic analysis of a suction caisson foundation for offshore wind turbines
YANG Chunbao1,2, ZHANG Jianmin1,2, WANG Rui1,2
1. Institute of Geotechnical Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory for Hydraulic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1588 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为进行海上风电吸力桶基础地震安全评估,选取欧洲北海砂质海床中典型的吸力桶基础,基于三维砂土液化大变形统一本构模型,通过OpenSees有限元开源平台进行三维动力计算,分析了吸力桶基础的地震变形和倾覆转角。吸力桶基础的地震变形具体如下:基础产生一定的水平位移震荡,最终累积发展为大变形;桶基发生严重的不均匀沉降,桶基后部出现一定程度的上移;倾覆转角不断增加,最终达0.8°以上,远超过规范规定的安全稳定运营值,后期无法运营;基础转动中心在地震过程中不断调整;地震中海床孔压上升,桶基内出现一定的负孔压,可以提高抗倾覆承载力,地震结束时负压区消散。海床液化深度约3 m,桶基前部产生刺入海床破坏。海床地震液化加剧了吸力桶基础的变形和倾覆,严重影响着海上风机的安全运营。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨春宝
张建民
王睿
关键词 海上风电吸力桶基础地震海床液化    
Abstract:The stability of suction caisson foundations during earthquakes is evaluated for a typical suction caisson foundation of an offshore wind turbine located in a sandy seabed in the North Sea. The analysis was a unified plasticity model for the large post-liquefaction shear deformation of the sand and a three-dimensional dynamic finite element analysis to predict the seismic deformation and overturning probability during an earthquake. The analysis shows that the foundation experiences horizontal oscillations that lead to large deformations. The caisson slants with the rear moving up. The overturning probability keeps increasing and the angle eventually reaches more than 0.8°, which exceeds the safety limit. The rotation center constantly changes and the seabed pore pressure increases. Negative pore pressures can develop inside the caisson which enhance the overturning probability, but then dissipate. The seabed liquefaction depth is about 3 m, so the front of the caisson pierces into the seabed. Consequently, seabed liquefaction aggravates the deformation and overturning probability which affects the system operation.
Key wordsoffshore wind turbine    suction caisson    earthquake    seabed liquefaction
收稿日期: 2017-03-31      出版日期: 2017-11-15
ZTFLH:  TU475+.1  
通讯作者: 张建民,教授,E-mail:zhangjm@tsinghua.edu.cn     E-mail: zhangjm@tsinghua.edu.cn
引用本文:   
杨春宝, 张建民, 王睿. 海上风电吸力桶基础地震分析[J]. 清华大学学报(自然科学版), 2017, 57(11): 1207-1211.
YANG Chunbao, ZHANG Jianmin, WANG Rui. Seismic analysis of a suction caisson foundation for offshore wind turbines. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1207-1211.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.063  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I11/1207
  图1 计算模型图
  图2 Parkfield地震波
  表1 模拟的砂土材料参数
  图3 桶前土水平位移时程
  图4 桶基各点竖向位移时程
  图5 累积转角时程
  图6 转动中心时程
  图7 孔压分布(单位:kPa)
  图8 孔压时程
  图9 地震主期6.1s时有效应力(单位:MPa)
[1] 封宇, 何焱, 朱启昊, 等. 近海及海上风资源时空特性研究[J]. 清华大学学报(自然科学版), 2016, 56(5):522-529.FENG Yu, HE Yan, ZHU Qihao, et al. Temporal and spatial characteristics of offshore wind resources[J]. Journal of Tsinghua University (Science & Technology), 2016, 56(5):522-529. (in Chinese)
[2] Byrne B W. Investigations of Suction Caissons in Dense Sand[D]. London:University of Oxford, 2000.
[3] 朱斌, 应盼盼, 邢月龙. 软土中吸力式桶形基础倾覆承载性能离心模型试验[J]. 岩土力学, 2015, 36(1):247-252.ZHU Bin, YING Panpan, XING Yuelong. Centrifuge model test on suction caisson foundation in soft clay subjected to lateral loads[J]. Rock and Soil Mechanics, 2015, 36(1):247-252. (in Chinese)
[4] 刘梅梅, 练继建, 杨敏, 等. 宽浅式筒型基础竖向承载力研究[J]. 岩土工程学报, 2015, 37(2):379-384.LIU Meimei, LIAN Jijian, YANG Min, et al. Vertical bearing capacity of wide-shallow bucket foundation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2):379-384. (in Chinese)
[5] WU Ke, LUAN Maotian, FAN Qinglai,et al. Failure envelopes of bucket foundation subjected to combined loads[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2):574-580.
[6] Houlsby G T, Kelly R B, Huxtable J, et al. Field trials of suction caissons in sand for offshore wind turbine foundations[J]. Geotechnique, 2006, 56(1):3-10.
[7] 张建红, 林小静, 鲁晓兵. 水平荷载作用下张力腿平台吸力式基础的物理模拟[J]. 岩土工程学报, 2007, 29(1):77-81.ZHANG Jianhong, LIN Xiaojing, LU Xiaobing. Physical modelling of suction foundations of TLPs under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1):77-81. (in Chinese)
[8] 王建华, 杨海明. 软土中桶型基础水平循环承载力的模型试验[J]. 岩土力学, 2008, 29(10):2607-2612.WANG Jianhua, YANG Haiming. Model tests on horizontal cyclic bearing capacity of bucket foundations in soft clays[J]. Rock and Soil Mechanics, 2008, 29(10):2607-2612. (in Chinese)
[9] Villalobos F A, Byron B W, Houlsby G T. Model testing of suction caissons in clay subjected to vertical loading[J]. Applied Ocean Research, 2010, 32:414-424.
[10] Houlsby G T, Ibsen L B, Byrne B W. Suction caissons for wind turbines[C]//Proceedings of International Symposium on Frontiers in Offshore Geotechnics. London:Taylor and Francis, 2005:75-94.
[11] Tempel J V D. Design of Support Structures for Offshore Wind Turbines[D]. Delft:Delft University of Technology, 2006.
[12] Seed H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. Journal of the Geotechnical Engineering Division, ASCE, 1979, 105(GT2):201-255.
[13] ZHANG Jianmin. Cyclic Critical Stress State Theory of Sand with Its Application to Geotechnical Problems[D]. Tokyo:Tokyo Institute of Technology, 1997.
[14] WANG Rui, ZHANG Jianmin, WANG Gang. A unified plasticity model for large post-liquefaction shear deformation of sand[J]. Computers and Geotechnics, 2014, 59:54-66.
[15] 朱斌, 应盼盼, 郭俊科, 等. 海上风电机组吸力式桶形基础承载力分析与设计[J]. 岩土工程学报, 2013, 35(1):443-450.ZHU Bin, YING Panpan, GUO Junke, et al. Analysis and design of bearing capacity of suction caisson foundations of offshore wind turbines[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(1):443-450. (in Chinese)
[16] WANG Xuefei, ZENG Xiangwu, YU Hao, et al. Centrifuge modeling of offshore wind turbine with bucket foundation under earthquake loading[C]//The International Foundations Congress and Equipment Expo. San Antonio, TX, USA:ASCE, 2015:1741-1750.
[1] 侯本伟, 游丹, 范世杰, 许成顺, 钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估[J]. 清华大学学报(自然科学版), 2024, 64(3): 509-520.
[2] 王鑫, 林鹏, 黄浩东, 袁兢, 邱旭, 刘鑫. 海上风电基础冲刷动力特性及在线监测[J]. 清华大学学报(自然科学版), 2023, 63(7): 1087-1094.
[3] 王卫, 王百智, 陈松贵, 闫俊义, 金峰, 江朝华. 海上风电单桩胶结抛石体防冲刷措施模型试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1401-1407.
[4] 曹子龙, 黄杜若. 基于XGBoost算法的工程场地实测和人工地震波时频特征分析与判别[J]. 清华大学学报(自然科学版), 2022, 62(8): 1330-1340.
[5] 王兴旺, 刘耀儒, 吕帅, 杨强. 高拱坝蓄水期库岸变形与水库诱发地震相关性研究[J]. 清华大学学报(自然科学版), 2022, 62(8): 1341-1350.
[6] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[7] 杨剑锋, 展慧, 陈良超, 窦站. 考虑地震灾害的城市人员密集区域应急疏散路线规划[J]. 清华大学学报(自然科学版), 2022, 62(1): 70-76.
[8] 宋丹青, 黄进, 刘晓丽, 王恩志. 地震作用下岩体结构及岩性对高陡岩质边坡动力响应特征的影响[J]. 清华大学学报(自然科学版), 2021, 61(8): 873-880.
[9] 范乐, 王燕语, 张靖岩, 韦雅云. 基于安全韧性分析的地震应急救援实训功能设计策略[J]. 清华大学学报(自然科学版), 2020, 60(1): 9-17.
[10] 周萌, 樊健生, 聂建国. 新型灾害冻震震害分析及形成机理[J]. 清华大学学报(自然科学版), 2017, 57(10): 1063-1069.
[11] 李媛媛, 陈建国, 张小乐, 袁宏永. 基于建筑结构破坏的地震伤亡评估方法及应用[J]. 清华大学学报(自然科学版), 2015, 55(7): 803-807,814.
[12] 黄必清,张毅,易晓春. 海上风电场运行维护系统[J]. 清华大学学报(自然科学版), 2014, 54(4): 522-529.
[13] 彭卓, 邓焱, 马骋, 熊剑平, 尹永利. 基于FPGA的高精度正弦信号发生器设计与实现[J]. 清华大学学报(自然科学版), 2014, 54(2): 197-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn