Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot
GUO Jichang, ZHU Zhiming, WANG Xin, MA Guorui
Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
Abstract:Versatile welding robots designed for the field welding of box-type steel structures have the problems of low DOF (degree of freedom) and DOF coupling. A numerical solution method was developed for the inverse kinematics of the robot based on the layouts of actual welding processes to solve difficulties encountered in analytic methods. The numerical solution leads to a trajectory planning method based on the recursive algorithm to adjust the position and posture of the welding torch to realize smooth adjustments and transitions of the welding torch during welding of the right-angle turning point of the box-type steel structures. This approach provides trajectory planning for the all-position welding of box-type steel in an automatic algorithm that is applicable to different sizes of box-type steel structures.
郭吉昌, 朱志明, 王鑫, 马国锐. 全位置焊接机器人逆运动学数值求解及轨迹规划方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 292-297.
GUO Jichang, ZHU Zhiming, WANG Xin, MA Guorui. Numerical solution of the inverse kinematics and trajectory planning for an all-position welding robot. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 292-297.
[1] 朱志明, 郭吉昌, 马国锐, 等. 箱型钢结构环缝焊接的机器人运动学分析与轨迹规划[J]. 清华大学学报(自然科学版), 2017, 57(8):785-791. ZHU Z M, GUO J C, MA G R, et al. Kinematics analysis and trajectory planning for a welding robot for girth welding of box-type steel structures[J]. Journal of Tsinghua University (Science & Technology), 2017, 57(8):785-791. (in Chinese) [2] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. Transactions of the ASME Journal of Applied Mechanics, 1955, 22:215-221. [3] RODD M G. Introduction to robotics:Mechanics and control:John J. Craig[J]. Automatica, 1987, 23(2):263-264. [4] YOSHIKAWA K, TANAKA K. Welding robots for steel frame structures[J]. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1):43-56. [5] NAGATA M, BABA N, TACHIKAWA H, et al. Steel frame welding robot systems and their application at the construction site[J]. Computer-Aided Civil and Infrastructure Engineering, 1997, 12(1):15-30. [6] 清华大学, 中铁建设集团有限公司. 一种箱型钢结构轨道式全位置焊接机器人:CN201310201215.5. 2013-09-11. Tsinghua University, China Railway Construction Group Co., Ltd. Rail type all-position welding robot for box-type steel structures:CN201310201215.5. 2013-09-11. (in Chinese) [7] 朱志明, 马国锐, 刘晗, 等. 箱型钢结构焊接机器人系统机构设计与研究[J]. 焊接, 2014(3):2-7. ZHU Z M, MA G R, LIU H, et al. The structure design of box-type steel structure welding robot[J]. Welding & Joining, 2014(3):2-7. (in Chinese) [8] 朱志明, 马国锐, 郭吉昌, 等. 基于蒙特卡洛法的箱型钢结构焊接机器人工作空间分析[J]. 焊接, 2016(9):1-5. ZHU Z M, MA G R, GUO J C, et al. Analysis of box-type steel structure welding robot workspace based on Monte Carlo method[J]. Welding & Joining, 2016(9):1-5. (in Chinese) [9] 蔡自兴, 谢斌. 机器人学[M]. 3版. 北京:清华大学出版社, 2015. CAI Z X, XIE B. Robotics[M]. 3th ed. Beijing, China:Tsinghua University Press, 2015. (in Chinese) [10] PIEPER D L. The kinematics of manipulators under computer control[D]. Palo Alto, California:Stanford University, 1968. [11] DUFFY J. Analysis of mechanisms and robot manipulators[M]. London, UK:Edward Arnold, 1980. [12] 梶田秀司. 仿人机器人[M]. 管贻生, 译. 北京:清华大学出版社, 2007. KAJITA S. Humanoid robots[M]. GUAN Y S, Trans. Beijing, China:Tsinghua University Press, 2007. (in Chinese) [13] 熊涛, 韦建军, 洪晓莉. 下肢康复机器人逆运动学数值解法[J]. 机械设计与制造, 2016(5):164-166, 170. XIONG T, WEI J J, HONG X L. Numerical method for solving the inverse kinematics of lower limb rehabilitation robot[J]. Machinery Design & Manufacture, 2016(5):164-166, 170. (in Chinese)