Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (3): 243-248    DOI: 10.16511/j.cnki.qhdxxb.2018.21.008
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
构造速率兼容多元LDPC码的扩展方法
穆锡金, 李华安, 白宝明
西安电子科技大学 综合业务网理论及关键技术国家重点实验室, 西安 710071
Extension method for constructing rate-compatible nonbinary LDPC codes
MU Xijin, LI Huaan, BAI Baoming
State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文基于改进的扩展方法构造了一类速率兼容多元低密度校验(LDPC)码,其中低码率码的校验符号不仅与高码率码的码字有关,还与中间码率码的校验符号有关。构造过程涉及了掩模矩阵和基矩阵的优化设计、多元域元素的随机替换等具体步骤。该文还采用代数方法设计码的校验矩阵,进而降低了设计复杂度。所构造的码不仅具有速率兼容特性,还具有易于编译码器硬件实现的准循环结构。仿真结果表明:该码在较大的码率范围内都能够获得较好的瀑布区和平层区性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
穆锡金
李华安
白宝明
关键词 多元低密度校验码速率兼容改进的扩展方法代数方法    
Abstract:This paper describes a class of rate-compatible nonbinary low-density parity-check (LDPC) codes based on an improved extension method. The check symbols for lower code rates involve not only the codewords of the highest-rate code but also the check symbols of moderate-rate codes. The construction process optimizes the masking matrix and the base matrix with random replacement of nonbinary elements. This paper also describes an algebraic method to design the parity matrices to further reduce the design complexity. The codes are not only rate compatible, but also have a quasi-cyclic structure which will benefit hardware implementations of the encoder and decoder. Numerical tests show that the codes can achieve good performance within a wide range of code rates in both the waterfall region and in the error-floor region.
Key wordsnonbinay low-density parity-check codes    rate-compatible    improved extension method    algebraic method
收稿日期: 2017-12-07      出版日期: 2018-03-14
ZTFLH:  TN911.22  
基金资助:国家自然科学基金面上项目(61771364)
通讯作者: 白宝明,教授,E-mail:bmbai@mail.xidian.edu.cn     E-mail: bmbai@mail.xidian.edu.cn
作者简介: 穆锡金(1989-),男,博士研究生。
引用本文:   
穆锡金, 李华安, 白宝明. 构造速率兼容多元LDPC码的扩展方法[J]. 清华大学学报(自然科学版), 2018, 58(3): 243-248.
MU Xijin, LI Huaan, BAI Baoming. Extension method for constructing rate-compatible nonbinary LDPC codes. Journal of Tsinghua University(Science and Technology), 2018, 58(3): 243-248.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.008  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I3/243
  图1 RCGNBGLDPC码的校验矩阵结构
  图2 掩模矩阵结构
  图3 算法1
  图4 算法2
  图5 误比特率性能
  图6 例2中RCGNBGLDPC码的误分组率性能
  图7 RCGNBGLDPC码与其他LDPC码的性能比较
  图8 RCGNBGLDPC码与Polar码的性能比较
[1] DAVEY M C, MACKAY D J C. Low-density parity check codes over GF(q)[J]. IEEE Communications Letters, 1998, 2(6):165-167.
[2] POULLIAT C, FOSSORIER M, DECLERCQ D. Design of regular (2, dc)-LDPC codes over GF(q) using their binary images[J]. IEEE Transactions on Communications, 2008, 56(10):1626-1635.
[3] DOLECEK L, DIVSALAR D, SUN Y Z, et al. Non-binary protograph-based LDPC codes:Enumerators, analysis, and designs[J]. IEEE Transactions on Information Theory, 2014, 60(7):3913-3941.
[4] LIN W, BAI B M, LI Y, et al. Design of q-ary irregular repeat-accumulate codes[C]//Proceedings of 2009 International Conference on Advanced Information Networking and Applications. Bradford, UK:IEEE, 2009:201-206.
[5] ZENG L Q, LAN L, TAI Y Y, et al. Transactions papers-constructions of nonbinary quasi-cyclic LDPC codes:A finite field approach[J]. IEEE Transactions on Communications, 2008, 56(4):545-554.
[6] ZENG L Q, LAN L, TAI Y Y, et al. Construction of nonbinary cyclic, quasi-cyclic and regular LDPC codes:A finite geometry approach[J]. IEEE Transactions on Communications, 2008, 56(3):378-387.
[7] ZHOU B, KANG J Y, TAI Y Y, et al. High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries LDPC codes on Euclidean geometries[J]. IEEE Transactions on Communications, 2009, 57(5):1298-1311.
[8] LI J E, LIU K K, LIN S, et al. A matrix-theoretic approach to the construction of non-binary quasi-cyclic LDPC codes[J]. IEEE Transactions on Communications, 2015, 63(4):1057-1068.
[9] Ryan W E, Lin S. 信道编码:经典与现代[M]. 白宝明, 马啸, 译. 北京:电子工业出版社, 2017. RYAN W E, LIN S. Channel codes:Classical and modern[M]. BAI B M, MA X, Trans. Beijing:Publishing House of Electronics Industry, 2017. (in Chinese)
[10] ISCAN O, LENTNER D, XU W. A comparison of channel coding schemes for 5G short message transmission[C]//Proceedings of 2016 IEEE Globecom Workshops. Washington DC, USA:IEEE, 2016:1-6.
[11] SYBIS M, WESOLOWSKI K, JAYASINGHE K, et al. Channel coding for ultra-reliable low-latency communication in 5G systems[C]//Proceedings of the 84th Vehicular Technology Conference. Montreal, QC, Canada:IEEE, 2016:1-5.
[12] DURISI G, KOCH T, POPOVSKI P. Toward massive, ultrareliable, and low-latency wireless communication with short packets[J]. Proceedings of the IEEE, 2016, 104(9):1711-1726.
[13] WILLIAMSON A R, CHEN T Y, WESEL R D. Variable-length convolutional coding for short blocklengths with decision feedback[J]. IEEE Transactions on Communications, 2015, 63(7):2389-2403.
[14] ÖSTMAN J, DURISI G, STR? M E G, et al. Low-latency ultra-reliable 5G communications:Finite-blocklength bounds and coding schemes[C]//Proceedings of the 11th International ITG Conference on Systems, Communications and Coding. Hamburg, Germany:IEEE, 2017.
[15] HUANG J, ZHOU W, ZHOU S L. Structured nonbinary rate-compatible low-density parity-check codes[J]. IEEE Communications Letters, 2011, 15(9):998-1000.
[16] ZHOU L, BAI B M, XU M. Design of nonbinary rate-compatible LDPC codes utilizing bit-wise shortening method[J]. IEEE Communications Letters, 2010, 14(10):963-965.
[17] KASAI K, DECLERCQ D, POULLIAT C, et al. Multiplicatively repeated nonbinary LDPC codes[J]. IEEE Transactions on Information Theory, 2011, 57(10):6788-6795.
[18] ZHU M, WEI Y, BAI B M, et al. Nonbinary Kite codes:A family of nonbinary rate-compatible LDPC codes[C]//Proceedings of 2015 IEEE International Symposium on Information Theory. Hong Kong, China:IEEE, 2015:1094-1098.
[19] CHANG B Y, DOLECEK L, DIVSALAR D. EXIT chart analysis and design of non-binary protograph-based LDPC codes[C]//Proceedings of 2011 Military Communications Conference. Baltimore, MD, USA:IEEE, 2011:566-571.
[20] KARIMI M, BANIHASHEMI A H. Counting short cycles of quasi cyclic protograph LDPC codes[J]. IEEE Communications Letters, 2012, 16(3):400-403.
[21] 3GPP. 3GPP TSG RAN WG1 Meeting NR Ad-Hoc#2.. https://www.3GPP.org.
[22] 3GPP. 3GPP TSG RAN WG1 Meeting #88.. https://www.3GPP.org.
[23] TAL I, VARDY A. List decoding of Polar codes[J]. IEEE Transactions on Information Theory, 2015, 61(5):2213-2226.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn