Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (8): 740-745    DOI: 10.16511/j.cnki.qhdxxb.2018.21.014
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于缓冲波导的T(0,1)模态导波激励方法实验研究
孙斐然1, 丁雨林1, 孙振国1,2, 陈强1,2, MURAYAMA Riichi3
1. 清华大学 机械工程系, 北京 100084, 中国;
2. 浙江清华长三角研究院, 嘉兴 314006, 中国;
3. 福冈工业大学 智能机械工程系, 福冈 811-0295, 日本
Experimental study of the T(0,1)-wave excitation method based on a buffer waveguide
SUN Feiran1, DING Yulin1, SUN Zhenguo1,2, CHEN Qiang1,2, MURAYAMA Riichi3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China;
3. Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
全文: PDF(5382 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 缓冲波导是解决超声传感器在高温管道在线检测中失效问题的重要途径。针对已提出的通过在缓冲波导内产生S0模态的Lamb波,并利用缓冲波导与管道的连接耦合,间接激励出T(0,1)模态导波的方法,本文进行了实验研究,设计并研制了用于激励S0模态Lamb波的曲折型线圈电磁超声换能器和用于接收T(0,1)模态导波的周期性永磁铁阵列式电磁超声换能器。结果表明:S0模态的Lamb波通过缓冲波导后能够激励出T(0,1)模态的导波对管道进行检测,从而验证了该方法的有效性,并为该方法的工程应用奠定了基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙斐然
丁雨林
孙振国
陈强
MURAYAMA Riichi
关键词 超声导波缓冲波导T (0,1)模态管道检测电磁超声换能器高温管道    
Abstract:This paper presents an experimental study of the T(0,1) mode guided wave excitation method for a buffer waveguide wrapped around a pipe which has been proposed to overcome the main challenge in online inspection of high-temperature pipelines. The dispersion curve was analyzed in tests to show that the T(0,1) mode guided wave can be excited in the pipe by exciting the S0 mode Lamb wave in the buffer waveguide with a meander-line coil EMAT to generate the S0-wave and a PPM EMAT to detect the T(0,1)-wave. Tests indicate that the T(0,1)-wave can be converted from the S0-wave by the buffer waveguide, which verifies the validity of this method as a foundation for engineering applications.
Key wordsguided wave    buffer waveguide    T (0,1) mode    pipe inspection    electromagnetic acoustic transducer (EMAT)    high-temperature pipe
收稿日期: 2018-02-07      出版日期: 2018-08-15
通讯作者: 孙振国,副教授,E-mail:sunzhg@tsinghua.edu.cn     E-mail: sunzhg@tsinghua.edu.cn
引用本文:   
孙斐然, 丁雨林, 孙振国, 陈强, MURAYAMA Riichi. 基于缓冲波导的T(0,1)模态导波激励方法实验研究[J]. 清华大学学报(自然科学版), 2018, 58(8): 740-745.
SUN Feiran, DING Yulin, SUN Zhenguo, CHEN Qiang, MURAYAMA Riichi. Experimental study of the T(0,1)-wave excitation method based on a buffer waveguide. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 740-745.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.014  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I8/740
  图1 基于缓冲波导的高温管道 T(0,1) 模态导波激励方法
  图2 缓冲波导温度分布的计算模型
  图3 缓冲波导内的温度分布曲线
  表1 管道和缓冲波导的物理参数
  图4 超声导波的频散曲线
  图5 曲折型线圈 EMAT
  图6 圆周式 PPM EMAT
  图7 基于缓冲波导激励 T(0,1)模态导波的实验装置
  图8 S0模态导波通过缓冲波导后转换为 T(0,1)模态导波的波形图
[1] ZHANG X W, TANG Z F, LV F Z, et al. Helical comb magnetostrictive patch transducers for inspecting spiral welded pipes using flexural guided waves[J]. Ultrasonics, 2017, 74:1-10.
[2] LIU Z H, HU Y A, FAN J W, et al. Longitudinal mode magnetostrictive patch transducer array employing a multi-splitting meander coil for pipe inspection[J]. NDT & E International, 2016, 79:30-37.
[3] XU J, WU X J, KONG D Y, et al. A guided wave sensor based on the inverse magnetostrictive effect for distinguishing symmetric from asymmetric features in pipes[J]. Sensors, 2015, 15(3):5151-5162.
[4] 何存富, 胡跃刚, 焦敬品, 等. 低阶扭转模态电磁声阵列传感器研制及其在厚壁小径管中的试验研究[J]. 机械工程学报, 2015, 51(2):14-20.HE C F, HU Y G, JIAO J P, et al. Array of fundamental torsional mode EMATs and experiment in thick-wall pipe with small diameter[J]. Journal of Mechanical Engineering, 2015, 51(2):14-20. (in Chinese)
[5] 黄焕东. 高温压力管道检测技术研究[C]//压力管道技术研究进展精选集——第四届全国管道技术学术会议. 黄山, 中国:化学工业出版社, 2010:406-408.HUANG H D. Research on the inspection technology of high-temperature pressure pipeline[C]//Pressure Piping Technology Progress Collection-Fourth National Pipeline Technology Conference. Huangshan, China:Chemical Industry Press, 2010:406-408. (in Chinese)
[6] DHUTTI A, TUMIN S A, MOHIMI A, et al. Development of low frequency high temperature ultrasonic transducers for in-service monitoring of pipework in power plants[J]. Procedia Engineering, 2016, 168:983-986.
[7] HERNANDEZ-VALLE F, DIXON S. Preliminary tests to design an EMAT with pulsed electromagnet for high temperature[C]//AIP Conference Proceedings. Chicago, Illinois:AIP, 2009, 1096(1):936-941.
[8] HERNANDEZ-VALLE F, DIXON S. Initial tests for designing a high temperature EMAT with pulsed electromagnet[J]. NDT & E International, 2010, 43(2):171-175.
[9] MURAYAMA R, MATSUMOTO K, USHITANI K, et al. Pipe inspection system by guide wave using a long distance waveguide[J]. Modern Mechanical Engineering, 2015, 5(4):139-149.
[10] 丁辉. 计算超声学:声场分析及应用[M]. 北京:科学出版社, 2010.Ding H. Computational ultrasonics-analysis and application of ultrasonic field[M]. Beijing:Science Press, 2010. (in Chinese)
[1] 周恺, 张睿哲, 叶宽, 李鸿达, 王哲, 黄松岭. 基于同步压缩小波变换的接地扁钢缺陷电磁超声SH导波检测方法[J]. 清华大学学报(自然科学版), 2022, 62(12): 2013-2020.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn