Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 934-940    DOI: 10.16511/j.cnki.qhdxxb.2018.21.023
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究
张展博, 李胜强
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 先进核能技术协同创新中心, 北京 100084
Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank
ZHANG Zhanbo, LI Shengqiang
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1481 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 液体晃动是一种常见的现象,可能造成飞行器失稳、箱体结构损坏、液面监测困难等危害。因此对液体晃动的抑制受到了广泛深入的研究,其中最常用的方法就是在箱体内部布置挡板。基于Darcy定律的多孔介质模型为模拟多孔挡板提供了简单易行的方法,该文在对比实验结果验证数值模拟方法可靠性的基础上,研究了低频大幅晃动条件下水平多孔挡板不同浸没深度对液面晃动的影响,发现了波峰和波谷变化的规律以及在特殊情况下挡板导致波峰高度增加的现象,并对其机理进行了简要分析。挡板的阻碍对液面造成了扰动,导致液面围绕无挡板情况下的液面位置振荡运动,在特定情况下可能会出现更高的波峰,使得液面晃动看起来更加剧烈。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张展博
李胜强
关键词 水平多孔挡板浸没深度低频大幅晃动数值模拟    
Abstract:Liquid sloshing is a common phenomenon that can cause instabilities in aircraft, can damage the tanks, and can complicate liquid level monitoring. Therefore, sloshing suppression has been extensively studied. The most common method is to arrange baffles in the tanks. The porous media model based on Darcy's law provides a simple method for simulating flows in tanks with porous baffles. In this study, experimental data was used to verify the reliability of numerical simulations used to investigate the influence of various immersion depths of horizontal porous baffles on liquid sloshing for low-frequency, large-amplitude sloshing conditions. The results show that the sloshing crests and troughs change more with higher sloshing crests because of the baffles in some cases. The baffles disturb the liquid surface which make the liquid surface oscillate more than without baffles. Thus, the baffles increasing the liquid sloshing in some cases.
Key wordshorizontal porous baffle    baffle submergence depth    low-frequency, large-amplitude sloshing    numerical simulation
收稿日期: 2018-06-25      出版日期: 2018-10-17
通讯作者: 李胜强,副研究员。E-mail:sqli@tsinghua.edu.cn     E-mail: sqli@tsinghua.edu.cn
引用本文:   
张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
ZHANG Zhanbo, LI Shengqiang. Numerical simulation study of the effects of horizontal porous baffles on liquid sloshing in a cylindrical tank. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 934-940.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.023  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/934
  图1 水箱示意图
  图2 多孔介质模型的验证
  图3 文[18]无挡板水箱两侧液面高度差(左侧减右侧)
  图4 数值模拟中不同频率下两侧壁面处液面高度对比
  图5 无挡板水箱模拟与文[18]实验结果对比
  图6 有挡板水箱模拟与文[18]实验结果对比
  图7 圆柱水箱在水平小幅振荡激励下液面高度随频率变化
  图8 圆柱水箱在水平小幅振荡激励下液面高度随频率变化
  图9 文[18]实验中第一共振峰高度与浸没深度的关系
  图10 高频区间内不同角频率下波峰高度随浸没深度的变化
  图11 无挡板和有挡板条件下液面高度随时间的变化
  图12 三个时间差的示意图
  图13 每个周期内三个时间差的变化
  图14 不同角频率下波谷随挡板浸没深度的变化
[1] MOLIN B, REMY F, ARNAUD G, et al. On the dispersion equation for linear waves traveling through or over dense arrays of vertical cylinders[J]. Applied Ocean Research, 2016, 61:148-155.
[2] IRANMANESH A, PASSANDIDEH-FARD M. A 2D numerical study on suppressing liquid sloshing using a submerged cylinder[J]. Ocean Engineering, 2017, 138:55-72.
[3] STRAND I M, FALTINSEN O M. Linear sloshing in a 2D rectangular tank with a flexible sidewall[J]. Journal of Fluids & Structures, 2017, 73:70-81.
[4] TURNER M R. Liquid sloshing in a horizontally forced vessel with bottom topography[J]. Journal of Fluids & Structures, 2016, 64:1-26.
[5] LUO M, KOH C G, BAI W. A three-dimensional particle method for violent sloshing under regular and irregular excitations[J]. Ocean Engineering, 2016, 120:52-63.
[6] CHO I H, KIM M H. Effect of dual vertical porous baffles on sloshing reduction in a swaying rectangular tank[J]. Ocean Engineering, 2016, 126:364-373.
[7] CHO I H, CHOI J S, Kim M H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle[J]. Ocean Engineering, 2017, 138:23-34.
[8] FALTINSEN O M, TIMOKHA A N. Natural sloshing frequencies and modes in a rectangular tank with a slat-type screen[J]. Journal of Sound & Vibration, 2011, 330(7):1490-1503.
[9] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Steady-state liquid sloshing in a rectangular tank with a slat-type screen in the middle:Quasilinear modal analysis and experiments[J]. Physics of Fluids, 2011, 23(4):1058.
[10] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen[J]. Journal of Engineering Mathematics, 2011, 70(1-3):93-109.
[11] FALTINSEN O M, FIROOZKOOHI R, TIMOKHA A N. Effect of central slotted screen with a high solidity ratio on the secondary resonance phenomenon for liquid sloshing in a rectangular tank[J]. Physics of Fluids, 2011, 23(6):042101.
[12] AKYILDIZ H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank[J]. Journal of Sound & Vibration, 2012, 331(1):41-52.
[13] JUNG J H, YOON H S, LEE C Y, et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank[J]. Ocean Engineering, 2012, 44(1):79-89.
[14] WANG W, PENG Y, ZHOU Y, et al. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles[J]. Applied Ocean Research, 2016, 59:543-563.
[15] YANG Q, JONES V, MCCUE L. Free-surface flow interactions with deformable structures using an SPH-FEM model[J]. Ocean Engineering, 2012, 55(15):136-147.
[16] CHEN Z, ZONG Z, LI H T, et al. An investigation into the pressure on solid walls in 2D sloshing using SPH method[J]. Ocean Engineering, 2013, 59(2):129-141.
[17] BRAR G S, SINGH S. An experimental and CFD analysis of sloshing in a tanker[J]. Procedia Technology, 2014, 14(4):490-496.
[18] JIN H, LIU Y, LI H J. Experimental study on sloshing in a tank with an inner horizontal perforated plate[J]. Ocean Engineering, 2014, 82(2):75-84.
[19] REBOUILLAT S, LIKSONOV D. Fluid-structure interaction in partially filled liquid containers:A comparative review of numerical approaches[J]. Computers & Fluids, 2010, 39(5):739-746.
[20] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[21] WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986, 1(1):3-25.
[22] TAIT M J, EL DAMATTY A A, ISYUMOV N, et al. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens[J]. Journal of Fluids & Structures, 2005, 20(8):1007-1023.
[23] ZHAO W, YANG J, HU Z, et al. Hydrodynamics of a 2D vessel including internal sloshing flows[J]. Ocean Engineering, 2014, 84(4):45-53.
[1] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[2] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
[3] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[4] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
[5] 刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
[6] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[7] 管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
[8] 王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
[9] 张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[10] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn