Abstract:The dynamics of a conical orifice valve in a heavy-duty vehicle damper were analyzed using 3-D fluid-structure coupling finite element models solved using the direct coupling computational method. The results show the internal 3-D transient fluid pressure and velocity distributions for transient inlet flow rates and the unsteady high-frequency fluctuations of the valve opening and the forces on the valve. The dynamic responses are given for various compression spring characteristics, valve structure parameters and inlet flow rates to understand the fluid-structure coupling self-excited vibrations of the valve. The results show that heavily preloaded valve springs and small inlet flow rates lead to high-frequency fluctuations of the valve opening and collisions of the core onto the seat. In addition, a zero preload of the valve spring eliminates the fluid-structure coupling vibrations and large inlet flow rates reduce the unsteady opening fluctuations. These conclusions are important for understanding fluid-structure coupling self-excited vibration problems in valves.
吕振华, 李明. 锥形节流阀的三维流-固耦合非稳态动力学特性仿真分析[J]. 清华大学学报(自然科学版), 2018, 58(1): 35-42.
LÜ Zhenhua, LI Ming. Simulations of the unsteady fluid-structure coupling characteristics of a conical orifice valve. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 35-42.
吕振华, 李世民. 筒式液阻减振器动态特性模拟分析技术的发展[J]. 清华大学学报(自然科学版), 2002, 42(11):1532-1536. LÜ Z H, LI S M. Simulation techniques for nonlinear dynamic characteristics of telescopic hydraulic dampers[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(11):1532-1536. (in Chinese)
[2]
吕振华, 姜利泉. 基于液-固耦合有限元分析方法的气-液型减振器补偿阀性能研究[J]. 工程力学, 2006, 23(11):163-169. LÜ Z H, JIANG L Q. FSI FEA simulation of liquid-supplement valves in gas-pressurized hydraulic dampers[J]. Engineering Mechanics, 2006, 23(11):163-169. (in Chinese)
[3]
CHOI Y S, LEE J H, JEONG W B, et al. Dynamic behavior of valve system in linear compressor based on fluid-structure interaction[J]. Journal of Mechanical Science and Technology, 2010, 24(7):1371-1377.
[4]
MIN W, JI H, YANG L. Axial vibration in a poppet valve based on fluid-structure interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2014, 229(17):1-8.
[5]
SHAMS M, EBRAHIMI R, RAOUFI A, et al. CFD-FEA analysis of hydraulic shock absorber valve behavior[J]. International Journal of Automotive Technology, 2007, 8(5):615-622.
[6]
刘君, 徐春光, 张帆. 电磁阀动态特性的流固耦合模拟研究[J]. 推进技术, 2015, 36(7):968-975. LIU J, XU C G, ZHANG F. Fluid-structure interaction simulation of dynamic properties of electro-magnetic valve[J]. Journal of Propulsion Technology, 2015, 36(7):968-975. (in Chinese)
[7]
王雯, 傅卫平, 孔祥剑, 等. 单座式调节阀阀芯-阀杆系统流固耦合振动研究[J]. 农业机械学报, 2014, 45(5):291-298. WANG W, FU W P, KONG X J, et al. Research on fluid-structure coupling vibration of valve core-stem system in a single-type control valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5):291-298. (in Chinese)
[8]
BAZSÓC, HOS C J. An experimental study on the stabilityof a direct spring loaded poppet relief valve[J]. Journal of Fluids and Structures, 2013, 42:456-465.
[9]
YI D, LU L, ZOU J, et al. Interactions between poppet vibration and cavitation in relief valve[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2015, 229(8):1447-1461.
[10]
HAYASHI S. Instability of poppet valve circuit[J]. JSME International Journal Series C:Dynamics, Control, Robotics, Design and Manufacturing, 1995, 38(3):357-366.
[11]
HAYASHI S, HAYASE T, KURAHASHI T. Chaos in a hydraulic control valve[J]. Journal of Fluids and Structures, 1997, 11(6):693-716.
[12]
MISRA A, BEHDINAN K, CLEGHORN W L. Self-excited vibration of a control valve due to fluid-structure interaction[J]. Journal of Fluids and Structures, 2002, 16(5):649-665.
[13]
BAZSÓC, CHAMPNEYS A R, HOS C J. Bifurcation analysis of a simplified model of a pressure relief valve attached to a pipe[J]. SIAM Journal on Applied Dynamical Systems, 2014, 13(2):704-721.
[14]
马威, 马飞, 周志鸿, 等. 液压溢流阀的失稳分析和实验研究[J]. 工程科学学报, 2016, 38(1):135-142. MA W, MA F, ZHOU Z H, et al. Instability analysis and experimental study of a hydraulic relief valve[J]. Chinese Journal of Engineering, 2016, 38(1):135-142. (in Chinese)
[15]
YONEZAWA K, OGAWA R, OGI K, et al. Flow-induced vibration of a steam control valve[J]. Journal of Fluids and Structures, 2012, 35:76-88.
[16]
BEUNE A, KUERTEN J G M, VAN HEUMEN M P C. CFD analysis with fluid-structure interaction of opening high-pressure safety valves[J]. Computers and Fluids, 2012, 64(3):108-116.
[17]
QIAN J Y, WEI L, JIN Z J, et al. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve[J]. Energy Conversion and Management, 2014, 87:220-226.
[18]
LI C, LIEN F, YEE E, et al. Multiphase flow simulations of poppet valve noise and vibration:SAE technical paper 2015-01-0666[R]. Warrendale, PA, USA:SAE, 2015.
[19]
ADINA R&D INC. Theory and modeling guide, volume Ⅲ:ADINA CFD & FSI:Report ARD 13-10[R/OL].[2017-02-12]. http://www.adina.com/adinadownloads/docs/tmg-f_89.pdf.
[20]
RUGONYI S, BATHE K J. On finite element analysis of fluid flows fully coupled with structural interactions[J]. CMES:Computer Modeling in Engineering and Sciences, 2001, 2(2):195-212.
[21]
SOULI M, OUAHSINE A, LEWIN L. ALE formulation for fluid-structure interaction problems[J]. Computer Method in Applied Mechanics and Engineering, 2000, 190(5-7):659-675.
[22]
李明, 吕振华. 一种锥形节流阀工作过程流-固耦合动力学响应的影响因素分析[J]. 工程力学, 2017, 34(9):239-247. LI M, LÜ Z H. FSI dynamic response analyses of a conical orifice valve during working process with several major influences[J]. Engineering Mechanics, 2017, 34(9):239-247. (in Chinese)