Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 43-49    DOI: 10.16511/j.cnki.qhdxxb.2018.22.007
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
质子交换膜燃料电池阴极单相流压降模型及验证
李跃华, 裴普成, 吴子尧, 贾肖宁
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Verification of a cathode pressure drop model for single phase flow in a proton exchange membrane fuel cell
LI Yuehua, PEI Pucheng, WU Ziyao, JIA Xiaoning
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(1707 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 燃料电池阴极单相流压降是进行阴极在线水管理的基准,已有研究缺少该压降的全工况模型。该文在156 W单片燃料电池上发现了阴极压降随电流、过量系数变化的二次方关系,并给出影响压降的5个参数:电流、过量系数、电池温度、进气压强以及进气湿度。提出了包括这些参数在内的流量二次方模型。通过分析各工况下模型系数与实验数据的对应关系得出模型与实验数据之间偏差小于10%。该模型可应用于蛇形流道或平行流道的所有电池堆,对在线水故障诊断具有一定的参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李跃华
裴普成
吴子尧
贾肖宁
关键词 氢能质子交换膜燃料电池阴极压降在线水管理    
Abstract:The single phase flow pressure drop through the cathode in a proton exchange membrane fuel cell is an important benchmark for online water management. However, there are few models of this pressure drop applicable to all operating conditions. The cathode pressure drop is found here to be a quadratic function of the current and stoichiometric ratio using experimental data for a 156 W fuel cell. Five parameters influencing the pressure drop are the current, stoichiometric ratio, stack temperature, inlet pressure, and inlet relative humidity. A model for this pressure drop is then developed that agrees within 10% with experiment results. This model can guide online diagnosis of water related faults.
Key wordshydrogen energy    proton exchange membrane fuel cell    cathode pressure drop    online water management
收稿日期: 2017-06-01      出版日期: 2018-01-15
ZTFLH:  TK91  
通讯作者: 裴普成,教授,E-mail:pchpei@mail.tsinghua.edu.cn     E-mail: pchpei@mail.tsinghua.edu.cn
引用本文:   
李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
LI Yuehua, PEI Pucheng, WU Ziyao, JIA Xiaoning. Verification of a cathode pressure drop model for single phase flow in a proton exchange membrane fuel cell. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 43-49.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.007  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/43
  表1 燃料电池参数
  图1 流道几何模型
  表2 实验参数
  图2 压降数据采集与处理示例
  图3 电流密度对阴极单相流压降的影响
  图4 (P=6 0k P a,T=6 0℃ )堆温、 进压、 进气湿度对阴极压降的影响
  表3 图3和4数据拟合式(相关系数均大于0.9 8)
  图6 (网络版彩图)不同温度、 压强、湿度下的湿空气黏度
  图7 k k 的计算值与实验拟合值对比
[1] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6):587-591.XU H C, PEI P C, WU Z Y. Hydrogen crossover current and electronic resistance detection in a PEM fuel cell[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):587-591. (in Chinese)
[2] LI H, TANG Y H, WANG Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. Journal of Power Sources, 2008, 178(1):103-117.
[3] LU Z, KANDLIKAR S, RATH C, et al. Water management studies in PEM fuel cells, Part Ⅱ:Ex situ investigation of flow maldistribution, pressure drop and two-phase flow pattern in gas channels[J]. International Journal of Hydrogen Energy, 2009, 34(8):3445-3456.
[4] RAMSCHAK E, FOUQUET N, BRANDSTARTTER H, et al. Online fuel cell monitoring and operating conditions identification including life time measurement[J]. Journal of Automotive Safety and Energy, 2011, 2(1):45-52.
[5] PEI P C, LI Y H, XU H C, et al. A review on water fault diagnosis of PEMFC associated with the pressure drop[J]. Applied Energy, 2016, 173:366-385.
[6] ANDERSON R, ZHANG L F, DING Y L, et al. A critical review of two-phase flow in gas flow channels of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(15):4531-4553.
[7] KANDLIKAR S, SEE E, KOZ M, et al. Two-phase flow in GDL and reactant channels of a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(12):6620-6636.
[8] PEI P C, OUYANG M G, FENG W, et al. Hydrogen pressure drop characteristics in a fuel cell stack[J]. International Journal of Hydrogen Energy, 2006, 31(3):371-377.
[9] SONG M C, PEI P C, ZHA H S, et al. Water management of proton exchange membrane fuel cell based on control of hydrogen pressure drop[J]. Journal of Power Sources, 2014, 267:655-663.
[10] LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1):39-48.
[11] CHISHOLM D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12):1767-1778.
[12] BANERJEE R, HOWE D, MEJIA V, et al. Experimental validation of two-phase pressure drop multiplier as a diagnostic tool for characterizing PEM fuel cell performance[J]. International Journal of Hydrogen Energy, 2014, 39(31):17791-17801.
[13] MAHARUDRAYYA S, JAYANTI S, DESHPANDE A. Pressure losses in laminar flow through serpentine channels in fuel cell stacks[J]. Journal of Power Sources, 2004, 138(1/2):1-13.
[14] LI X G, SABIR I, PARK J. A flow channel design procedure for PEM fuel cells with effective water removal[J]. Journal of Power Sources, 2007, 163(2):933-942.
[15] SUTERA S, SKALAK R. The history of Poiseuille's law[J]. Annual Review of Fluid Mechanics, 1993, 25:1-20.
[16] WILKE C. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4):517-519.
[17] BUFFHAM B, MASON G, HESLOP M, et al. Perturbation viscometry of gas mixtures:Fitting a model to logarithmic viscosity gradients[J]. Chemical Engineering Science, 2002, 57:110-121.
[1] 李爽, 史翊翔, 蔡宁生. 面向能源转型的化石能源与可再生能源制氢技术进展[J]. 清华大学学报(自然科学版), 2022, 62(4): 655-662.
[2] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[3] 曹军文, 郑云, 张文强, 于波. 能源互联网推动下的氢能发展[J]. 清华大学学报(自然科学版), 2021, 61(4): 302-311.
[4] 裴普成, 李子钊, 任棚, 陈东方, 王希忠. PEM燃料电池用金属双极板及其涂层的研究进展[J]. 清华大学学报(自然科学版), 2021, 61(10): 1025-1038.
[5] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[6] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
[7] 赵阳, 王树博, 李微微, 谢晓峰. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
[8] 杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
[9] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 587-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn