Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 75-80    DOI: 10.16511/j.cnki.qhdxxb.2018.22.010
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
基于幅度振荡的天线圆周运动多径检测技术
谢林, 崔晓伟, 陆明泉
清华大学 电子工程系, 北京 100084
Multipath detection based on signal amplitude oscillations with circularly rotating antenna
XIE Lin, CUI Xiaowei, LU Mingquan
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1216 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 多径干扰是全球导航卫星系统(GNSS)高精度应用的主要误差来源之一。地球同步轨道(GEO)卫星在北斗全球系统中的应用导致了极低的多径衰落频率,致使大部分基于测量域的多径检测技术失效。该文提出了基于天线圆周运动的多径检测技术。通过控制天线转动参数,提高多径衰落频率从而使接收信号的幅度振荡在频谱中易于区分,以检测多径干扰。在基于GNSS信号源生成的多径场景实验中,所提方法能有效检测出低于直达信号30 dB的短时延多径干扰,且其性能优于基于载噪比(CNR)和码减载波(CMC)的多径检测方法。该方法大大缩短了多径检测时间,同时解决了GEO卫星多径检测问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢林
崔晓伟
陆明泉
关键词 抗干扰全球导航卫星系统(GNSS)多径检测多径衰落地球同步轨道(GEO)    
Abstract:Multipath interference is the main error source in high-precision global navigation satellite system (GNSS) applications. The geosynchronous earth orbit (GEO) satellite in the BeiDou navigation satellite system (BDS) has extremely low fading frequencies on the multipath signals, so most measurement based multipath detection techniques are ineffective. This paper describes a multipath detection method based on a circularly rotating antenna. The rotating parameters are controlled to increase the multipath fading frequency so that it is separated from the spectrum of the received signals to facilitate detection. Tests use a GNSS signal generator to create the multipath environment. This method successfully detects a short delay multipath signal that is 30 dB lower than the direct signal. Its signal detection ability is then better than the carrier to noise ratio (CNR) and code minus carrier (CMC)-based multipath detection methods. This method dramatically reduces the detection time and solves the GEO multipath detection problem.
Key wordsanti-jamming    global navigation satellite system (GNSS)    multipath detection    multipath fading    geosynchronous earth orbit (GEO)
收稿日期: 2017-03-14      出版日期: 2018-01-15
ZTFLH:  TN973  
通讯作者: 崔晓伟,副教授,E-mail:cxw2005@tsinghua.edu.cn     E-mail: cxw2005@tsinghua.edu.cn
引用本文:   
谢林, 崔晓伟, 陆明泉. 基于幅度振荡的天线圆周运动多径检测技术[J]. 清华大学学报(自然科学版), 2018, 58(1): 75-80.
XIE Lin, CUI Xiaowei, LU Mingquan. Multipath detection based on signal amplitude oscillations with circularly rotating antenna. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 75-80.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.010  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/75
  图1 任意反射模型中卫星、 反射体、天线之间的几何关系
  图2 静态天线码相位多径偏差与同一位置动态天线 (运动圆心与静态天线位置重合)的码相位偏差的关系
  图3 相关器输出的时域振荡和对应频谱以及关键参数之间的关系
  表1 仿真场景的参数
  图4 多径检测器在表1中定义的两种多径场景下的检测结果
  图5 基于 CMC的多径检测器在多径场景 A 中的检测结果与无多径时的结果的比较
[1] WANNINGER L, WALLSTAB-FREITAG S. Combined processing of GPS, GLONASS, and SBAS code phase and carrier phase measurements[C]//Proceedings of the 20th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2007).Fort Worth, USA, 2007:866-875.
[2] SCHEMPP T, BURKE J, RUBIN A. WAAS benefits of GEO ranging[C]//Proceedings of the 21st International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2008).Savannah, USA, 2008:1903-1910.
[3] 冯晓超, 金国平, 范建军, 等.GNSS接收机伪距测量中的多径效应试验分析[J].现代电子技术, 2013, 36(5):77-81.FENG X C, JIN G P, FAN J J, et al. Experimentation and analysis of multipath effect in pseudo-range measurement of GNSS receiver[J]. Modern Electronics Technique, 2013, 36(5):77-81. (in Chinese)
[4] GAO Y, YAO Z, CUI X, et al. Analysing the orbit influence on multipath fading in global navigation satellite systems[J]. IET Radar, Sonar and Navigation, 2014, 8(1):65-70.
[5] SOKHANDAN N, CURRAN J T, BROUMANDAN A, et al. An advanced GNSS code multipath detection and estimation algorithm[J]. GPS Solutions, 2016, 20(4):627-640.
[6] WEILL L R. Achieving theoretical bounds for receiver-based multipath mitigation using Galileo OS signals[C]//ION GNSS 19th International Technical Meeting of the Satellite Division.Fort Worth, USA, 2006:1035-1047.
[7] STRODE P R, GROVES P D. GNSS multipath detection using three-frequency signal-to-noise measurements[J]. GPS Solutions, 2016, 20(3):399-412.
[8] BEITLER A, TOLLKUEHN A, PLATTNER D B. CMCD:Multipath detection for mobile GNSS receivers[C]//Proceedings of the 2015 International Technical Meeting of the Institute of Navigation. Dana Point, USA, 2015:455-464.
[9] SHALLBERG K, SHLOSS P, ALTSHULER E L. WAAS measurement processing, reducing the effects of multipath[C]//Proceedings of the 14th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 2001). Salt Lake City, USA, 2001:2334-2340.
[10] SHALLBERG K, SHENG F. WAAS measurement processing:Current design and potential improvements[C]//Proceedings of 2008 IEEE/ION Position, Location and Navigation Symposium. Monterey, USA, 2008:253-262.
[11] WU X L, ZHOU J H, WANG G, et al. Multipath error detection and correction for GEO/IGSO satellites[J]. Science China:Physics, Mechanics and Astronomy, 2012, 55(7):1297-1306.
[12] IRSIGLER M. Characterization of multipath phase rates in different multipath environments[J]. GPS Solutions, 2010, 14(4):305-317.
[13] VAN DEN BREKEL B J H, VAN NEE D J R. GPS multipath mitigation by antenna movement[J]. Electronic Letters, 1992, 28(25):2286-2288.
[14] KAPLAN E D, HEGARTY C J. Understanding GPS:Principles and applications[M]. 2nd ed. Boston, USA:Artech House Publishers, 2006:164-173.
[1] 陆尤明, 刘刚, 崔晓伟, 陆明泉. 基于双天线联合的GNSS信号抗旋转跟踪算法[J]. 清华大学学报(自然科学版), 2021, 61(9): 1015-1024.
[2] 黎奇, 白征东, 黎琼, 吴斐, 陈波波, 辛浩浩, 程宇航. 定位测姿系统室外三维动态检定场的几何设计[J]. 清华大学学报(自然科学版), 2019, 59(11): 895-901.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn