Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 81-86    DOI: 10.16511/j.cnki.qhdxxb.2018.22.011
  化学与化学工程 本期目录 | 过刊浏览 | 高级检索 |
陈晓方, 钱荧灿, 王雅琳, 阳春华
中南大学 信息科学与工程学院, 长沙 410083
Dynamic adjustment interval identification of hydrocracking based on principal component derivative feature clustering
CHEN Xiaofang, QIAN Yingcan, WANG Yalin, YANG Chunhua
School of Information Science and Engineering, Central South University, Changsha 410083, China
全文: PDF(2192 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 加氢裂化过程流程长,操作变量多且耦合严重,加工方案多变,数据存在大量噪声。为能准确地从数据中提取动态调整操作序列,提出了一种基于主元导数特征聚类的加氢裂化动态调整区间识别方法。采用主元分析方法提取加氢裂化关键操作参数的主元,再基于带滑动窗口的多项式拟合方法拟合主元数据,提取拟合数据的一阶导数作为聚类特征,设计基于密度峰值确定聚类初始点的K-means算法,进行聚类分析,从而识别出加氢裂化动态调整区间。中国某石化企业实际生产数据验证结果表明:该方法可避免单个或几个变量误差的影响,能有效识别动态调整区间,且不依赖先验知识。
E-mail Alert
关键词 加氢裂化调整过程主元分析动态区间识别导数特征聚类    
Abstract:Hydrocracking is a complicated long-term process resulting from many coupled variables that affect manufacturing schedule and create loud noises. This paper presents a dynamic interval identification method for hydrocracking based on principal component derivative feature clustering to accurately identify the dynamic changes from data. Firstly, a principal component analysis (PCA) is used to extract the principal components of the key hydrocracking operating parameters. Then, the first-order derivatives are obtained from fitting polynomials of the principal components with sliding windows. After that, the K-means algorithm is used to identify the dynamic adjustment intervals for the principal component derivative feature clustering with the density peak technique used to determine the initial centers. The flexibility and effectiveness of this method are validated on an industrial petrochemical process. The results show that this method can avoid the influence of variable errors and accurately identify the dynamic adjustment intervals without priori knowledge.
Key wordshydrocracking    adjustment process    principal component analysis (PCA)    dynamic interval identification    derivative feature clustering
收稿日期: 2017-09-02      出版日期: 2018-01-15
ZTFLH:  TE624  
通讯作者: 王雅琳,教授,     E-mail:
陈晓方, 钱荧灿, 王雅琳, 阳春华. 基于主元导数特征聚类的加氢裂化动态调整区间识别[J]. 清华大学学报(自然科学版), 2018, 58(1): 81-86.
CHEN Xiaofang, QIAN Yingcan, WANG Yalin, YANG Chunhua. Dynamic adjustment interval identification of hydrocracking based on principal component derivative feature clustering. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 81-86.
链接本文:  或
  图1 (网络版彩图)加氢裂化流程图
  图2 理想情况下系统动态调整状态示意图
  图3 加氢裂化动态调整过程关键变量变化曲线
  图4 C F S FDP法确定K G m e a n s初始聚类中心的决策图
  图5 C S T法对调整过程的识别结果
  图6 本文方法对调整过程的识别结果
  表1 调整过程识别结果分析
  表2 本文算法在其他5组工业数据上的验证结果
[1] 张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1):60-80.ZHANG S M, WANG F L, TAN S, et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42(1):60-80.(in Chinese)
[2] NARASIMHAN S, MAH R S H, TAMHANE A C, et al. A composite statistical test for detecting changes of steady states[J]. AIChE Journal, 1986, 32(9):1409-1418.
[3] 李博, 陈丙珍, 胡惠琴. 稳态过程在线数据校正技术的工业实施[J].石油化工, 2000, 29(10):768-771.LI B, CHEN B Z, HU H Q. Industrial application of steady state online data reconciliation[J]. Petrochemical Technology, 2000, 29(10):768-771.(in Chinese)
[4] LI G H. Inverse lag synchronization in chaotic systems[J]. Chaos Solitons and Fractals, 2009, 40(3):1076-1080.
[5] CAO S L, RHINEHART R R. Critical values for a steady-state identifier[J]. Journal of Process Control, 1997, 7(2):149-152.
[6] 陈文驰, 刘飞. 一种改进的基于多项式滤波的稳态检测方法[J]. 控制工程, 2012, 19(2):13-15, 20.CHEN W C, LIU F. An improved steady state identification method based on polynomial filtering[J]. Control Engineering of China, 2012, 19(2):13-15, 20.(in Chinese)
[7] TAO L L, LI C C, KONG X D, et al. Steady-state identification with gross errors for industrial process units[C]//201210th World Congress on Intelligent Control and Automation (WCICA). New York, USA, 2012:4151-4154.
[8] 吕游, 刘吉臻, 赵文杰, 等. 基于分段曲线拟合的稳态检测方法[J]. 仪器仪表学报, 2012, 33(1):194-200.LV Y, LIU J Z, ZHAO W J, et al. Steady-state detecting method based on piecewise curve fitting[J]. Chinese Journal of Scientific Instrument, 2012, 33(1):194-200.(in Chinese)
[9] JIANG T W, CHEN B Z, HE X R, et al. Application of steady-state detection method based on wavelet transform[J]. Computers and Chemical Engineering, 2003, 27(4):569-578.
[10] 季一丁. 多变量复杂系统的稳态检测和提取方法研究[D]. 杭州:浙江大学, 2016.JI Y D. Research on steady state detection and extraction methods for multivariable complex system[D]. Hangzhou:Zhejiang University, 2016.(in Chinese)
[11] MENG J L, SHANG H K, BIAN L. The application on intrusion detection based on K-means cluster algorithm[C]//International Forum on Information Technology and Applications. New York, USA, 2009, 1:150-152.
[12] CHOI Y, PARK C, KWEON I S. Accelerated K-means clustering using binary random projection[C]//Asian Conference on Computer Vision. Singapore, 2014:257-272.
[13] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[14] WANG S L, WANG D K, LI C Y, et al. Clustering by fast search and find of density peaks with data field[J]. Chinese Journal of Electronics, 2016, 25(3):397-402.
No related articles found!
Full text



版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持