Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 87-93    DOI: 10.16511/j.cnki.qhdxxb.2018.22.012
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
基于参量激励的谐振子振动控制系统的设计
宋明亮, 周斌, 张嵘
清华大学 精密仪器系, 导航技术工程中心, 北京 100084
Design of a resonator vibration control system based on parametric drive
SONG Mingliang, ZHOU Bin, ZHANG Rong
Engineering Research Center for Navigation Technology, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
全文: PDF(1553 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 参量激励是一种时变的谐振子振动激励方法,在微机电(MEMS)传感器中有着重要的应用。该文针对基于参量激励的谐振子闭环振动控制系统,通过理论推导得到了谐振子及控制环的数学模型,并对控制系统稳定性进行了分析,得到了控制系统参数选取的准则。通过数值仿真对理论研究的结论进行了验证,并研究了控制环参数对系统性能的影响。基于上述分析实验实现了基于参量激励的谐振子振动控制,谐振子起振过程的稳定时间小于0.2 s,稳定后振动幅度的方差为0.04 mV。该研究对基于参量激励的谐振子振动控制系统的设计具有参考意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋明亮
周斌
张嵘
关键词 微机电(MEMS)谐振子振动控制参量激励稳定性分析    
Abstract:Resonator vibration control based on parametric drive is a time-varying control method which has important applications in micro-electro-mechanical system (MEMS) sensors. This paper presents the design of a closed-loop parametric drive resonator vibration control system. The mathematical models of the parametric drive resonator and the control loops are derived theoretically. The system stability is analyzed with criteria for selecting the control loop parameters. Numerical simulations verify the theoretical analysis and the influences of the control loop parameters on the system performance. The analysis is then used to design a parametric drive vibration control for a MEMS resonator. The settling time of the starting process is less than 0.2 s and the variance of the amplitude at steady state is 0.04 mV. The research provides an important reference for the design of closed-loop parametric drive resonator vibration control systems.
Key wordsmicro-electro-mechanical system (MEMS) resonator    vibration control    parametric drive    stability analysis
收稿日期: 2017-03-15      出版日期: 2018-01-15
ZTFLH:  V241.5  
通讯作者: 周斌,副研究员,E-mail:zhoub@mail.tsinghua.edu.cn     E-mail: zhoub@mail.tsinghua.edu.cn
引用本文:   
宋明亮, 周斌, 张嵘. 基于参量激励的谐振子振动控制系统的设计[J]. 清华大学学报(自然科学版), 2018, 58(1): 87-93.
SONG Mingliang, ZHOU Bin, ZHANG Rong. Design of a resonator vibration control system based on parametric drive. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 87-93.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.012  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/87
  图1 基于参量激励的谐振子闭环振动控制系统框图
  图2 幅度控制环框图
  图3 频率控制环框图
  图4 基于参量激励的谐振子振动控制系统仿真平台框图
  图5 幅度环截止频率λ a 对系统振幅响应的影响
  图6 幅度环比例系数对系统振幅响应的影响
  图7 幅度环积分系数对系统振幅响应的影响
  图8 频率环截止频率对系统响应的影响
  图9 频率环比例系数对系统响应的影响
  图1 0 频率环积分系数对系统响应的影响
  图1 1 MEMS参量激励谐振子实物图
  图1 2 基于参量激励的谐振子振动控制方案
  图1 3 谐振子振幅、 参量激励电压及参量激励频率响应
[1] YAZDI N, AYAZI F, NAJAFI K. Micromachined inertial sensors[J]. Proceedings of the IEEE, 1998, 86(8):1640-1659.
[2] LIU K, ZHANG W P, CHEN W Y, et al. The development of micro-gyroscope technology[J]. Journal of Micromechanics and Microengineering, 2009, 19(11):113001-113029.
[3] 严杰, 周斌, 张嵘. 基于多核技术的三轴陀螺数字测控系统[J]. 微计算机信息, 2010(11):29-31.YAN J, ZHOU B, ZHANG R. Digital measurement and control system of three-axis gyroscope based on multi-core technology[J]. Microcomputer Information, 2010(11):29-31. (in Chinese)
[4] CUI J, CHI X Z, DING H T, et al. Transient response and stability of the AGC-PI closed-loop controlled MEMS vibratory gyroscopes[J]. Journal of Micromechanics and Microengineering, 2009, 19(12):125015.
[5] CHU Y X, DONG J X, CHI B Y, et al. A novel digital closed loop MEMS accelerometer utilizing a charge pump[J]. Sensors, 2016, 16(3):389.
[6] NAYFEH A, MOOK D. Nonlinear oscillations[M]. New York, USA:Wiley and Sons, 1979.
[7] OROPEZA-RAMOS L A, BURGNER C B, TURNER K L. Robust micro-rate sensor actuated by parametric resonance[J]. Sensors and Actuators A:Physical, 2009, 152(1):80-87.
[8] LINZON Y, ILIC B, LULINSKY S, et al. Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields[J]. Journal of Applied Physics, 2013, 113(16):925.
[9] SENKAL D, NG E J, HONG V, et al. Parametric drive of a toroidal MEMS rate integrating gyroscope demonstrating 20 PPM scale factor stability[C]//Proceeding of Inertial Sensors and Systems (ISISS) 2015. Estoril, Portugal, 2015:29-32.
[10] SONG M L, ZHOU B, CHEN Z Y, et al. Parametric drive MEMS resonator with closed-loop vibration control at ambient pressure[C]//Proceeding of Inertial Sensors and Systems (ISISS) 2016. Laguna Beach, USA, 2016:85-88.
[11] ADAMS S G, BERTSCH F M, SHAW K A, et al. Independent tuning of linear and nonlinear stiffness coefficients[J]. Journal of Microelectromechanical System, 1998, 7(2):172-180.
[12] LI Z H, YANG Z C, XIAO Z X, et al. A bulk micromachined vibratory lateral gyroscope fabricated with wafer bonding and deep trench etching[J]. Sensors and Actuators A:Physical, 2000, 83(1):24-29.
[13] DEMARTINI B E, RHOADS J F, TURNER K L, et al. Linear and nonlinear tuning of parametrically excited MEMS oscillators[J]. Journal of Microelectromechanical System, 2007, 16(2):310-318.
[1] 石冰清, 赵争鸣, 袁立强, 冯高辉. 能量平衡控制的稳态误差和全局稳定性分析[J]. 清华大学学报(自然科学版), 2020, 60(9): 740-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn