Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (4): 402-410    DOI: 10.16511/j.cnki.qhdxxb.2018.22.016
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
冷却润滑方式对CFRP/Al叠层钻孔质量及轴向力的影响
张玉玺1, 吴丹1, 杨亚鹏2, 马信国1, 梁雄1
1. 清华大学 机械工程系, 北京 100084;
2. 西安飞机工业(集团)有限责任公司, 西安 710089
Influence of cooling/lubrication conditions on the drilling quality and thrust force of CFRP/Al stacks
ZHANG Yuxi1, WU Dan1, YANG Yapeng2, MA Xinguo1, LIANG Xiong1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. AVIC Xi'an Aircraft Industry(Group) Limited Company, Xi'an 710089, China
全文: PDF(4203 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了探究碳纤维复合材料(CFRP)/铝合金(Al)叠层钻孔时不同冷却润滑方式对刀具磨损、钻削轴向力和钻孔质量的影响,进行了微量润滑和干式钻削条件下的钻孔实验。通过建立积屑瘤存在时CFRP钻削模型,揭示了影响轴向力诸因素的内在联系,解释了钻削CFRP层轴向力随加工孔数增加而逐渐变大的原因,分析了CFRP切屑分离原理和叠层制孔质量数据。结果表明:积屑瘤通过改变横刃实际工作长度、积屑瘤夹角、主切削刃摩擦角以及碳纤维实际剪切面上应力状态来影响CFRP钻削轴向力;积屑瘤存在时两种冷却润滑方式下CFRP总钻削轴向力的差异主要来源于横刃处的差异。采用干式钻削方式加工CFRP/Al叠层更易形成积屑瘤,连续加工时CFRP层高硬度的碳纤维挤压刀刃导致积屑瘤较软段不断生长脱落,是影响钻孔质量的重要原因;相比干式钻削,采用半程微量润滑方式加工CFRP/Al叠层能获得更好的钻孔质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉玺
吴丹
杨亚鹏
马信国
梁雄
关键词 叠层钻孔冷却润滑方式加工质量轴向力    
Abstract:The influence of cooling/lubrication conditions on the tool wear, hole quality, and thrust force was analyzed using minimal quantity lubrication (MQL) and dry drilling for drilling carbon fiber reinforced plastic (CFRP) and aluminum stacks. A mechanical model was developed to analyze the increase in the thrust force and the hole quality characteristics with the number of holes when drilling CFRP layers. The relationships between the built-up edge (BUE), chip separation mechanism, and thrust force were also analyzed. The results show that the BUE influences the thrust force for the CFRP layer by changing the chisel edge real working length, BUE angle, friction angle, and stress states in the real shear plane of the carbon fiber. The differences between the thrust forces at the chisel edge with MQL and dry drilling are the main effects influencing the resultant thrust force. The carbon fibers with the high hardness extruded cutting edges break the BUE continuity which worsens the stack holes quality. MQL improves the machining quality for CFRP/Al stack drilling compared with dry drilling.
Key wordsstacks drilling    cooling/lubrication conditions    machining quality    thrust force
收稿日期: 2017-06-05      出版日期: 2018-04-15
ZTFLH:  TH16  
基金资助:国家自然科学基金资助项目(51575306);清华大学摩擦学国家重点实验室项目(SKLT2015B01)
通讯作者: 吴丹,教授,E-mail:wud@tsinghua.edu.cn     E-mail: wud@tsinghua.edu.cn
作者简介: 张玉玺(1994-),男,博士研究生。
引用本文:   
张玉玺, 吴丹, 杨亚鹏, 马信国, 梁雄. 冷却润滑方式对CFRP/Al叠层钻孔质量及轴向力的影响[J]. 清华大学学报(自然科学版), 2018, 58(4): 402-410.
ZHANG Yuxi, WU Dan, YANG Yapeng, MA Xinguo, LIANG Xiong. Influence of cooling/lubrication conditions on the drilling quality and thrust force of CFRP/Al stacks. Journal of Tsinghua University(Science and Technology), 2018, 58(4): 402-410.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.016  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I4/402
  图1 制孔实验平台
  图2 积屑瘤形态
  图3 两种冷却润滑方式下后刀面磨损值
  图4 CFRP/Al叠层构件制孔钻削力随制孔数量的变化
  图5 横刃处轴向力模型
  图6 主切削刃处轴向力微元模型
  图7 积屑瘤存在时AC 和BC 剪切面受力示意图
  图8 CFRP层轴向力随制孔数量变化
  图9 孔径精度分析结果
  图10 孔壁粗糙度分析结果
  图11 铝合金孔壁表面粗糙度问题
  图12 CFRP层入口损伤
[1] 曹国顺. 工业机器人精确制孔试验研究[D]. 杭州:浙江大学, 2012. CAO G S. Experimental study on precision robotic drilling[D]. Hangzhou:Zhejiang University, 2012. (in Chinese)
[2] ZHANG L, LIU Z, TIAN W, et al. Experimental studies on the performance of different structure tools in drilling CFRP/Al alloy stacks[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(1-4):241-251.
[3] RAMULU M, BRANSON T, KIM D. A study on the drilling of composite and titanium stacks[J]. Composite Structures, 2001, 54(1):67-77.
[4] WANG C Y, CHEN Y H, AN Q L, et al. Drilling temperature and hole quality in drilling of CFRP/aluminum stacks using diamond coated drill[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(8):1689-1697.
[5] MONTOYAL M, CALAMAZ M, GEHIN D, et al. Evaluation of the performance of coated and uncoated carbide tools in drilling thick CFRP/aluminium alloy stacks[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2111-2120.
[6] 南成根, 吴丹, 马信国, 等. 碳纤维复合材料/钛合金叠层钻孔质量研究[J]. 机械工程学报, 2016, 52(11):177-185. NAN C G, WU D, MA X G, et al. Study on the drilling quality of carbon fiber reinforced plastic and titanium stacks[J]. Chinese Journal of Mechanical Engineering, 2016, 52(11):177-185. (in Chinese)
[7] TSAO C C, HOCHENG H. Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network[J]. Journal of Materials Processing Technology, 2008, 203(1-3):342-348.
[8] WANG X, KWON P Y, STURTEVANT C, et al. Comparative tool wear study based on drilling experiments on CFRP/Ti stack and its individual layers[J]. Wear, 2014, 317(1-2):265-276.
[9] SALOMON C. Process for the machining of metals or similarly acting materials when being worked by cutting tools:Germany 523594[P]. 1931.
[10] 南成根, 吴丹, 马信国, 等. CFRP/Al叠层钻孔粉状切屑对加工质量的影响[J]. 清华大学学报(自然科学版), 2015, 55(3):279-284. NAN C G, WU D, MA X G, et al. Influence of dust-like swarf on the drilling quality of carbon fiber reinforced plastic and aluminum stacks[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(3):279-284. (in Chinese)
[11] 冯之敬. 制造工程与技术原理[M]. 北京:清华大学出版社, 2004. FENG Z J. Manufacturing and techniques[M]. Beijing:Tsinghua University Press, 2004. (in Chinese)
[12] 张厚江. 碳纤维复合材料(CFRP)钻削加工技术的研究[D]. 北京:北京航空航天大学, 1998. ZHANG H J. Study on drilling technology of CFRP[D]. Beijing:Beijing University of Aeronautics and Astronautics, 1998. (in Chinese)
[13] ZHANG L C. Cutting composites:A discussion on mechanics modelling[J]. Journal of Materials Processing Technology, 2009, 209(9):4548-4552.
[14] GUO D M, WEN Q, GAO H, et al. Prediction of the cutting forces generated in the drilling of carbon-fibre-reinforced plastic composites using a twist drill[J]. Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture, 2011, 226(1):28-42.
[15] LIU S, QI Z, LI Y, et al. On full life-cycle instantaneous force predicting when drilling CFRP-metal stacks[J]. International Journal of Advanced Manufacturing Technology, 2016, 88(1-4):1-11.
[16] LUO B, LI Y, ZHANG K, et al. A novel prediction model for thrust force and torque in drilling interface region of CFRP/Ti stacks[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(9):1497-1508.
[17] 任书楠, 吴丹, 陈恳. 钻削碳纤维增强型复合材料的主切削刃轴向力[J]. 清华大学学报(自然科学版), 2013, 53(4):487-492. REN S N, WU D, CHEN K. Thrust force on the main cutting edge when cutting carbon fiber reinforced plastics[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(4):487-492. (in Chinese)
[18] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京:清华大学出版社, 2013. SHEN G L, HU G K, LIU B. Mechanics of composite materials[M]. Beijing:Tsinghua University Press, 2013. (in Chinese)
[1] 冯光烁, 顾永鹏, 兰旭东, 周明. 人字形面齿轮几何设计与基本特征分析[J]. 清华大学学报(自然科学版), 2019, 59(8): 670-682.
[2] 桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn