Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (5): 445-449    DOI: 10.16511/j.cnki.qhdxxb.2018.22.021
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
自然循环熔盐球床堆中间换热器的优化设计
薛春辉, 董玉杰
清华大学 核能与新能源技术研究院, 先进反应堆工程与安全教育部重点实验室, 北京 100084
Optimization of an intermediate heat exchanger for a natural circulation molten salt pebble-bed reactor
XUE Chunhui, DONG Yujie
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2640 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 核热泉堆是一种熔盐球床概念设计堆,具有满功率自然循环特性,中间换热器一次侧是一回路中除堆芯外主要的阻力来源。为降低中间换热器的阻力,提高换热效率,采用计算流体力学方法(CFD)对中间换热器单元流道的流动及其传热特性进行数值模拟,并构建换热器翅片阻力因子、Colburn因子和综合评价因子的响应面,利用多目标遗传算法对翅片的尺寸进行优化设计,并根据优化后的翅片尺寸基于Aspen软件进行换热器优化设计。优化后的换热器体积减小了30%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛春辉
董玉杰
关键词 中间换热器熔盐球床堆多目标优化设计计算流体力学方法(CFD)    
Abstract:The nuclear hot spring design concept for molten salt pebble-bed reactors features full power natural circulation with the intermediate heat exchanger (IHX) providing most of the pressure drop in the primary loop outside the core. The IHX flow resistance efficiency is improved here using numerical simulations of the flow and heat transfer characteristics in the flow channel of the IHX. Response surfaces are given for the influences of the structural parameters on the flow resistance coefficient, the Colburn factor and the comprehensive evaluation factor. Optimal fin dimensions are given for small pressure drops but high heat transfer efficiencies based on a multi-objective genetic optimization scheme. An IHX is then designed using the optimized fin parameters through the Aspen software with a 30% decrease of the overall volume of the IHX.
Key wordsintermediate heat exchanger    molten salt pebble-bed reactor    multi-objective optimization    computational fluid dynamics (CFD)
收稿日期: 2017-10-11      出版日期: 2018-05-15
ZTFLH:  TL334  
基金资助:国家科技重大专项资助项目(ZX069)
通讯作者: 董玉杰,教授,E-mail:dongyj@mail.tsinghua.edu.cn     E-mail: dongyj@mail.tsinghua.edu.cn
作者简介: 薛春辉(1989-),男,博士研究生。
引用本文:   
薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
XUE Chunhui, DONG Yujie. Optimization of an intermediate heat exchanger for a natural circulation molten salt pebble-bed reactor. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 445-449.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.021  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I5/445
  图1 核热泉堆示意图 [3]
  图2 板翅式换热器芯体结构
  图3 三角型翅片示意图
  图4 模型的计算单元
  表1 12.00T翅片的尺寸 [11]
  图5 计算模型的网格划分
  表2 网格数对阻力系数和 Colburn系数的影响
  图6 数值计算与实验结果对比
  图7 翅片几何尺寸对换热器性能的敏感性
  表3 优化计算得到的3组设计点
  表4 优化前后各因子的计算结果对比
  表5 中间换热器设计参数
  表6 Flibe的主要物性参数 [14]
  表7 优化前后的换热器尺寸对比
[1] FORSBERG C W, PICKARD P S, PETERSON P F. Molten salt cooled advanced high temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144:289-302.
[2] 吕应中. 在任何功率下长期自动运行生产高温核能的方法:201010145086.9. 2010-08-25.LÜ Y Z. A progress for producing high temperature nuclear energy with full power natural circulation operation:201010145086.9. 2010-08-25. (in Chinese)
[3] 吕应中. 大规模替代化石及其他有限能源的固有安全高温核动力[J]. 核科学与工程, 2011, 31(1):1-8.LÜ Y Z. An inherently-safe high-temperature nuclear energy producing process for the replacement of the fossil and other depletive energy on a large scale[J]. Chinese Journal of Nuclear Science and Engineering, 2011, 31(1):1-8. (in Chinese)
[4] NAJAFI H, NAJAFI B, HOSEINPOORI P. Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm[J]. Applied Thermal Engineering, 2011, 31:1839-1847.
[5] SANAYE S, HAJABDOLLAHI H. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm[J]. Applied Energy, 2009, 87:1893-1902.
[6] AHMADI P, HAJABDOLLAHI H, DINCER I. Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm[J]. Journal of Heat Transfer, 2011, 133(2):21801-21810.
[7] HAJABDOLLAHI H, TAHANI M, SHOJAEEFARD M H. CFD modeling and multi-objective optimization of compact heat exchanger using CAN method[J]. Applied Thermal Engineering, 2011, 31:2597-2604.
[8] ABDULLAH K, DAVID W C, ALICE E S. Multi-objective optimization using genetic algorithms:A tutorial[J]. Reliability Engineering & System Safety, 2006, 91(9):992-1007.
[9] MYERS R H, MONTGOMERY D C. Response surface methodology:Process and product in optimization using designed experiments[M]. New York, USA:John Wiley & Sons, 1995.
[10] SHAH R K, DUSAN P, SEKULIC D P. Fundamentals of heat exchanger design[M]. New York, USA:John Wiley & Sons, 2003.
[11] KAYS W M, LONDON A L. Compact heat exchanger[M]. 3rd ed. New York, USA:McGraw-Hill, 1984.
[12] BHOWMIK H, LEE K S. Analysis of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger[J]. International Communications in Heat and Mass Transfer, 2009, 36(3):259-263.
[13] IMAN R L, CONOVER W J. Small sample sensitivity analysis techniques for computer models, with an application to risk assessment communications in statistics:Part A[J]. Theory and Methods, 1980, 17:1749-1842.
[14] SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermos physical and thermochemical properties[R]. Idaho Falls, USA:Idaho National Laboratory, 2010.
[15] SOMMERS A, WANG Q, HAN X et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems:A review[J]. Applied Thermal Engineering, 2010, 30:1277-1291.
[1] 赵熹, 原鲲, 周羽. GH3128高温拉伸强度设计方法的优化[J]. 清华大学学报(自然科学版), 2015, 55(9): 998-1002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn