Optimization of an intermediate heat exchanger for a natural circulation molten salt pebble-bed reactor
XUE Chunhui, DONG Yujie
Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
Abstract:The nuclear hot spring design concept for molten salt pebble-bed reactors features full power natural circulation with the intermediate heat exchanger (IHX) providing most of the pressure drop in the primary loop outside the core. The IHX flow resistance efficiency is improved here using numerical simulations of the flow and heat transfer characteristics in the flow channel of the IHX. Response surfaces are given for the influences of the structural parameters on the flow resistance coefficient, the Colburn factor and the comprehensive evaluation factor. Optimal fin dimensions are given for small pressure drops but high heat transfer efficiencies based on a multi-objective genetic optimization scheme. An IHX is then designed using the optimized fin parameters through the Aspen software with a 30% decrease of the overall volume of the IHX.
薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
XUE Chunhui, DONG Yujie. Optimization of an intermediate heat exchanger for a natural circulation molten salt pebble-bed reactor. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 445-449.
[1] FORSBERG C W, PICKARD P S, PETERSON P F. Molten salt cooled advanced high temperature reactor for production of hydrogen and electricity[J]. Nuclear Technology, 2003, 144:289-302. [2] 吕应中. 在任何功率下长期自动运行生产高温核能的方法:201010145086.9. 2010-08-25.LÜ Y Z. A progress for producing high temperature nuclear energy with full power natural circulation operation:201010145086.9. 2010-08-25. (in Chinese) [3] 吕应中. 大规模替代化石及其他有限能源的固有安全高温核动力[J]. 核科学与工程, 2011, 31(1):1-8.LÜ Y Z. An inherently-safe high-temperature nuclear energy producing process for the replacement of the fossil and other depletive energy on a large scale[J]. Chinese Journal of Nuclear Science and Engineering, 2011, 31(1):1-8. (in Chinese) [4] NAJAFI H, NAJAFI B, HOSEINPOORI P. Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm[J]. Applied Thermal Engineering, 2011, 31:1839-1847. [5] SANAYE S, HAJABDOLLAHI H. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm[J]. Applied Energy, 2009, 87:1893-1902. [6] AHMADI P, HAJABDOLLAHI H, DINCER I. Cost and entropy generation minimization of a cross-flow plate fin heat exchanger using multi-objective genetic algorithm[J]. Journal of Heat Transfer, 2011, 133(2):21801-21810. [7] HAJABDOLLAHI H, TAHANI M, SHOJAEEFARD M H. CFD modeling and multi-objective optimization of compact heat exchanger using CAN method[J]. Applied Thermal Engineering, 2011, 31:2597-2604. [8] ABDULLAH K, DAVID W C, ALICE E S. Multi-objective optimization using genetic algorithms:A tutorial[J]. Reliability Engineering & System Safety, 2006, 91(9):992-1007. [9] MYERS R H, MONTGOMERY D C. Response surface methodology:Process and product in optimization using designed experiments[M]. New York, USA:John Wiley & Sons, 1995. [10] SHAH R K, DUSAN P, SEKULIC D P. Fundamentals of heat exchanger design[M]. New York, USA:John Wiley & Sons, 2003. [11] KAYS W M, LONDON A L. Compact heat exchanger[M]. 3rd ed. New York, USA:McGraw-Hill, 1984. [12] BHOWMIK H, LEE K S. Analysis of heat transfer and pressure drop characteristics in an offset strip fin heat exchanger[J]. International Communications in Heat and Mass Transfer, 2009, 36(3):259-263. [13] IMAN R L, CONOVER W J. Small sample sensitivity analysis techniques for computer models, with an application to risk assessment communications in statistics:Part A[J]. Theory and Methods, 1980, 17:1749-1842. [14] SOHAL M S, EBNER M A, SABHARWALL P, et al. Engineering database of liquid salt thermos physical and thermochemical properties[R]. Idaho Falls, USA:Idaho National Laboratory, 2010. [15] SOMMERS A, WANG Q, HAN X et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems:A review[J]. Applied Thermal Engineering, 2010, 30:1277-1291.