Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (6): 593-597,602    DOI: 10.16511/j.cnki.qhdxxb.2018.22.028
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
碱激发电炉镍渣的反应产物性能
王强, 杨峻, 王登权
清华大学 土木工程系, 北京 100084
Properties of the reaction products of alkali-activated electric furnace nickel slag
WANG Qiang, YANG Jun, WANG Dengquan
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3778 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为研究碱激发电炉镍渣的反应产物性能,使用氢氧化钠和水玻璃两种激发剂对电炉镍渣进行激发,测定反应放热、砂浆抗压强度、产物形貌和结构。试验结果表明:5%掺量的氢氧化钠激发电炉镍渣砂浆抗压强度最大;水玻璃掺量10%时,激发电炉镍渣的最佳模数为0.5;碱度高有利于前期抗压强度的增加,而硅酸根离子则有利于后期抗压强度的增加;无论使用氢氧化钠还是水玻璃,碱激发电炉镍渣只生成非晶态产物,且氢氧化钠激发电炉镍渣生成的凝胶较水玻璃激发生成的更为致密;相较于原料,碱激发电炉镍渣生成了硅氧连接聚合度更高的产物,但无法形成新配位形式的铝氧连接结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王强
杨峻
王登权
关键词 电炉镍渣碱激发反应产物抗压强度微观结构    
Abstract:Electric furnace nickel slag was alkali-activated by sodium hydroxide and water glass to study the reaction product properties with measurements of reaction heat of the binder, the mortar compressive strength, and the morphology and structure of the reaction products. The results show that the mortar compressive strength is the greatest for a sodium hydroxide content of 5%. The optimum modulus of the alkali-activated electric furnace nickel slag is 0.5 for a water glass content of 10%. The high alkalinity improves the initial strength, while the silicate ions improve the later strength. The reaction products are amorphous regardless of the type of alkali used and are denser with sodium hydroxide. The reaction products have more polymerized silica-oxygen connections than the raw materials. No new aluminum-oxygen configurations are found.
Key wordselectric furnace nickel slag    alkali-activation    reaction product    compressive strength    microstructure
收稿日期: 2017-12-11      出版日期: 2018-06-15
基金资助:国家自然科学基金面上项目(51778334)
引用本文:   
王强, 杨峻, 王登权. 碱激发电炉镍渣的反应产物性能[J]. 清华大学学报(自然科学版), 2018, 58(6): 593-597,602.
WANG Qiang, YANG Jun, WANG Dengquan. Properties of the reaction products of alkali-activated electric furnace nickel slag. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 593-597,602.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.028  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I6/593
  表1 电炉镍渣各化学组分的质量分数
  表2 碱激发电炉镍渣的砂浆试验配合比
  表3 碱激发电炉镍渣的砂浆抗压强度
  图1 电炉镍渣及其碱激发硬化浆体90d龄期的 XRD图谱
  图2 氢氧化钠激发电炉镍渣硬化浆体 90d龄期的微观形貌
  图3 水玻璃激发电炉镍渣硬化浆体 90d龄期的微观形貌
  表4 碱激发电炉镍渣生成的凝胶元素原子个数占比 %
  图4 碱激发电炉镍渣的反应放热曲线
  图5 碱激发电炉镍渣硬化浆体在不同龄期的 Fourier变换红外光谱
  图6 碱激发电炉镍渣硬化浆体在不同龄期的27Al 固体核磁共振图谱
[1] 孔令军, 赵祥麟, 刘广龙. 红土镍矿冶炼镍铁废渣环境安全性能研究[J]. 铜业工程, 2014(1):61-64. KONG L J, ZHAO X L, LIU G L. Research on environment safety of the laterite nickel ore smelting ferro-nickel slag[J]. Copper Engineering, 2014(1):61-64. (in Chinese)
[2] JUENGER M C G, WINNEFELD F, PROVIS J L, et al. Advances in alternative cementitious binders[J]. Cement and Concrete Research, 2011, 41(12):1232-1243.
[3] 段光福, 刘万超, 陈湘清, 等. 江西某红土镍矿冶炼炉渣作水泥混合材[J]. 金属矿山, 2012, 41(11):159-162. DUANG G F, LIU W C, CHEN X Q, et al. The laterite nickel ore smelting slag used as cement admixture[J]. Metal Mine, 2012, 41(11):159-162. (in Chinese)
[4] LEMONIS N, TSAKIRIDIS P E, KATSIOTIS N S, et al. Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction and Building Materials, 2015, 81:130-139.
[5] PROVIS J L. Geopolymers and other alkali activated materials:Why, how, and what?[J]. Materials and Structures, 2014, 47(1-2):11-25.
[6] PIPILIKAKI P, KATSIOTI M. Study of the hydration process of quaternary blended cements and durability of the produced mortars and concretes[J]. Construction and Building Materials, 2009, 23(6):2246-2250.
[7] JUNAID M T, KAYALI O, KHENNANE A, et al. A mix design procedure for low calcium alkali activated fly ash-based concretes[J]. Construction and Building Materials, 2015, 79:301-310.
[8] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F. Alkali-activated slag cements:Kinetic studies[J]. Cement and Concrete Research, 1997, 27(3):359-368.
[9] BERNAL S A, PROVIS J L, ROSE V, et al. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends[J]. Cement and Concrete Composites, 2011, 33(1):46-54.
[10] LI C, SUN H H, LI L T. A review:The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9):1341-1349.
[11] ZHANG Z H, WANG H, PROVIS J L. Quantitative study of the reactivity of fly ash in geopolymerization by FTIR[J]. Journal of Sustainable Cement-Based Materials, 2012, 1(4):154-166.
[12] 刘泽, 周瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6):1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6):1830-1834. (in Chinese)
[13] MARAGKOS I, GIANNOPOULOU I P, PANIAS D. Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2):196-203.
[14] ZAHARAKI D, KOMNITSAS K. Long term behaviour of ferronickel slag inorganic polymers in various environments[J]. Fresenius Environmental Bulletin, 2012, 21(8):2436-2440.
[15] KOMNITSAS K, ZAHARAKI D, PERDIKATSIS V. Geopolymerisation of low calcium ferronickel slags[J]. Journal of Materials Science, 2007, 42(9):3073-3082.
[16] YANG T, YAO X, ZHANG Z H. Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J]. Construction and Building Materials, 2014, 59:188-194.
[17] ZHANG Z H, ZHU Y C, YANG T, et al. Conversion of local industrial wastes into greener cement through geopolymer technology:A case study of high-magnesium nickel slag[J]. Journal of Cleaner Production, 2017, 141:463-471.
[18] RAVIKUMAR D, PEETHAMPARAN S, NEITHALATH N. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder[J]. Cement and Concrete Composite, 2010, 32(6):399-410.
[19] PUERTAS F, MARTIÍNEZ-RAMIÍREZ S, ALONSO S, et al. Alkali-activated fly ash/slag cements:Strength behaviour and hydration products[J]. Cement and Concrete Research, 2000, 30(10):1625-1632.
[20] FERNÁNDEZ-JIMÉNEZ A, PALOMO J G, PUERTAS F. Alkali-activated slag mortars:Mechanical strength behaviour[J]. Cement and Concrete Research, 1999, 29(8):1313-1321.
[21] GARCÍA-LODEIRO I, FERNÁNDEZ-JIMÉNEZ A, BLANCO M T, et al. FTIR study of the sol-gel synthesis of cementitious gels:C-S-H and N-A-S-H[J]. Journal of Sol-Gel Science and Technology, 2008, 45(1):63-72.
[22] LODEIRO I G, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3):147-153.
[23] KWAN S, LAROSA J, GRUTZECK M W. 29Si and 27Al MASNMR study of stratlingite[J]. Journal of the American Ceramic Society, 1995, 78(7):1921-1926.
[24] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cement and Concrete Research, 2003, 33(5):769-774
[25] OH J E, JUN Y, JEONG Y. Characterization for geopolymers from compositionally and physically different Class F fly ashes[J]. Cement and Concrete Composites, 2014, 50(21):16-26.
[1] 李俊峰, 邱瑜, 王建龙. 放射性废树脂特种水泥固化体的辐照稳定性[J]. 清华大学学报(自然科学版), 2017, 57(4): 410-414.
[2] 张增起, 石梦晓, 王强, 崔强. 等效龄期法在大体积混凝土性能预测中的准确性[J]. 清华大学学报(自然科学版), 2016, 56(8): 806-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn