Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (9): 821-826    DOI: 10.16511/j.cnki.qhdxxb.2018.22.035
  核能与新能源技术 本期目录 | 过刊浏览 | 高级检索 |
空间核反应堆电源闭式Brayton循环热力学分析
杨谢, 石磊
清华大学 核能与新能源技术研究院, 北京 100084
Thermodynamic analysis of closed Brayton cycles for space reactor power system
YANG Xie, SHI Lei
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(1455 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 空间核反应堆电源闭式Brayton循环一般采用氦-氙混合气体作为循环工质和反应堆冷却剂,设计者为选择合适的循环工质,需研究氦-氙混合气体配比成分变化对循环效率的影响。该文建立空间核反应堆电源闭式Brayton循环热力学模型,采用Fortran 95编程对其进行热力学分析,从绝热系数、回热器回热度、相对压损系数的变化分析了氦-氙混合气体摩尔质量变化对循环效率的影响。结果表明:绝热系数对循环效率的影响较小;回热器回热度越大,循环效率越高;相对压损系数越大,循环效率越低。由于氦-氙混合气体摩尔质量的增加,会降低空间Brayton循环压气机和透平级数,因此选择使回热器回热度达到最大时的配比成分He-8.6% Xe作为循环工质,在给定循环冷/热端温度为403 K/1 300 K的条件下,可以获得29.18%的循环效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨谢
石磊
关键词 空间核反应堆电源闭式Brayton循环氦-氙混合气体热力学分析    
Abstract:Helium-xenon mixtures can be used as the cycle working fluid and reactor coolant for space nuclear reactor power (SNRP) systems using a closed Brayton cycle. The cycle designers must know how the components of the helium-xenon mixture affect the net system efficiency to choose the best working fluid. A thermodynamic model is developed with Fortran 95 for the SNRP Brayton cycle to analyze the net system efficiency for various molecular mass mixtures in terms of the adiabatic coefficient, regenerator effectiveness and normalized pressure loss coefficient. The results show that the adiabatic coefficient has little effect on the net system efficiency, while the net system efficiency increases with increasing regenerator effectiveness and decreases with increasing normalized pressure loss coefficient. The compressor and turbine in a space Brayton cycle are smaller with higher molecular mass helium-xenon mixtures, so He-8.6%Xe is chosen as the cycle working fluid with the maximum regenerator effectiveness. For cold and hot sink temperatures of 403 K and 1 300 K, the net system efficiency is 29.18%.
Key wordsspace nuclear reactor power    closed Brayton cycle    helium-xenon mixture    thermodynamic analysis
收稿日期: 2018-01-02      出版日期: 2018-09-19
通讯作者: 石磊,教授,E-mail:shlinet@tsinghua.edu.cn     E-mail: shlinet@tsinghua.edu.cn
引用本文:   
杨谢, 石磊. 空间核反应堆电源闭式Brayton循环热力学分析[J]. 清华大学学报(自然科学版), 2018, 58(9): 821-826.
YANG Xie, SHI Lei. Thermodynamic analysis of closed Brayton cycles for space reactor power system. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 821-826.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.035  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I9/821
  图1 空间 Brayton循环流程图
  图2 空间 Brayton循环温熵图
  图3 程序流程框图
  表1 空间 Brayton循环热力学分析 程序计算结果与文[11]结果对比
  图4 关键参数随混合气体摩尔质量的变化关系
  图5 绝热系数对循环效率的影响
  图6 回热器回热度对循环效率的影响
  图7 相对压损系数变化对循环效率的影响
  表2 关键参数变化对循环效率的影响
  图8 特征工质的选取
  图9 不同特征工质的循环特性
[1] EL-GENK M S. Deployment history and design considerations for space reactor power systems[J]. Acta Astronautica, 2009, 64(9-10):833-849.
[2] STANCULESCU A. The role of nuclear power and nuclear propulsion in the peaceful exploration of space[M]. Vienna, Austria:International Atomic Energy Agency, 2005.
[3] BENNETT G L, HEMLER R J, SCHOCK A. Space nuclear power:An overview[J]. Journal of Propulsion and Power, 1996, 12(5):901-910.
[4] BARRETT M J. Expectations of closed-Brayton-cycle heat exchangers in nuclear space power systems[J]. Journal of Propulsion and Power, 2005, 21(1):152-157.
[5] BEVARD B B, YODER G L. Technology development program for an advanced potassium Rankine power conversion system compatible with several space reactor designs[J]. AIP Conference Proceedings, 2003, 654:629-634.
[6] SCHREIBER J G. Power characteristics of a Stirling radioisotope power system over the life of the mission[J]. AIP Conference Proceedings, 2001, 552:1011-1016.
[7] YUAN Y, SHAN J Q, ZHANG B, et al. Study on startup characteristics of heat pipe cooled and AMTEC conversion space reactor system[J]. Progress in Nuclear Energy, 2016, 86:18-30.
[8] EL-GENK M S, PARAMONOV D V, MARSHALL A C. Startup simulation of the TOPAZ-Ⅱ reactor system for accident conditions[J]. AIP Conference Proceedings, 1994, 301:1059-1068.
[9] EL-GENK M S. Space nuclear reactor power system concepts with static and dynamic energy conversion[J]. Energy Conversion and Management, 2008, 49(3):402-411.
[10] 李智. 空间反应堆动态能量转换系统特性研究[D]. 北京:清华大学, 2017.LI Z. Research on the dynamic energy conversion system for space nuclear reactor[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[11] EL-GENK M S, TOURNIER J M. Noble-gas binary mixtures for closed-Brayton-cycle space reactor power systems[J]. Journal of Propulsion and Power, 2007, 23(4):863-873.
[12] TOURNIER J M, EL-GENK M, GALLO B. Best estimates of binary gas mixtures properties for closed Brayton cycle space applications[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit. San Diego, USA, 2006.
[1] 马文魁, 叶萍, 曲新鹤, 杨小勇. 空间堆Brayton系统旁路阀功率快速调节特性[J]. 清华大学学报(自然科学版), 2023, 63(8): 1282-1290.
[2] 马文魁, 杨小勇, 王捷. 空间堆闭式Brayton循环回热器传热-阻力耦合特性[J]. 清华大学学报(自然科学版), 2022, 62(10): 1660-1667.
[3] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[4] 李智, 杨小勇, 王捷, 张作义. 空间反应堆Brayton循环的热力学特性[J]. 清华大学学报(自然科学版), 2017, 57(5): 537-543,549.
[5] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
[6] 李骁, 杨小勇, 张佑杰. HTR-10GT充装量调节特性及其机理[J]. 清华大学学报(自然科学版), 2015, 55(9): 1010-1016,1022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn