Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (7): 684-692    DOI: 10.16511/j.cnki.qhdxxb.2018.22.036
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
多交叉口工况的网联汽车最优节油驾驶策略
辛喆1, 余舟1, 郭强强2, 林庆峰3, 李升波2, 徐晨翔1
1. 中国农业大学 工学院, 北京 100083;
2. 清华大学 汽车工程系, 北京 100084;
3. 北京航空航天大学 交通科学与工程学院, 北京 100191
Fuel-saving driving strategy for connected vehicles in multiple signalized intersections
XIN Zhe1, YU Zhou1, GUO Qiangqiang2, LIN Qingfeng3, LI Shengbo2, XU Chenxiang1
1. College of Engineering, China Agriculture University, Beijing 100083, China;
2. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
3. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(2219 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对网联汽车在多交叉口工况的通行过程,提出了一种多信号灯配时已知条件下的节油驾驶求解方法,并建立了相应的驾驶策略。将两信号灯下的节油策略辨识问题构建为约束型最优控制问题,该问题以发动机油耗为性能指标,以车辆纵向动力学模型为状态方程,并考虑了车辆性能约束、环境约束等。为求解该问题,提出了以动态规划为核心的反向递推计算方法,发现了车辆加速-匀速-减速的3段式节油行驶模式。以此为基础,将车辆在多信号灯下的节油驾驶策略辨识问题转化为有向图的最短路径求解问题,并采用Floyd-Warshall最短路径算法进行求解,得到了各交叉口道路限速相同及不同工况下的车辆节油驾驶策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛喆
余舟
郭强强
林庆峰
李升波
徐晨翔
关键词 汽车燃料经济性网联汽车节油驾驶交叉口    
Abstract:This paper describes a fuel-saving driving strategy for multiple intersections with known signal times. The fuel-saving strategy with two signals is constructed as a constrained optimal control problem with the vehicle longitudinal dynamics model as the state equations and with the vehicle physical performance and environmental conditions as constraints. A reverse recursive calculational method based on dynamic programming is used to solve the problem with an accelerate-cruise-decelerate fuel-saving driving strategy. The fuel-saving modes for two intersections are then extended to multiple intersections as a shortest path problem solved by the Floyd-Warshall algorithm. A fuel-saving driving strategy is then developed for multiple intersections with the same or different speed limits.
Key wordsvehicle fuel economy    connected vehicle    fuel-saving driving    intersection
收稿日期: 2017-12-11      出版日期: 2018-07-15
基金资助:国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(51622504);“十三五”国家重点研发计划(2016YFB0100906);国家国际科技合作专项资助(2016YFE0102200)
引用本文:   
辛喆, 余舟, 郭强强, 林庆峰, 李升波, 徐晨翔. 多交叉口工况的网联汽车最优节油驾驶策略[J]. 清华大学学报(自然科学版), 2018, 58(7): 684-692.
XIN Zhe, YU Zhou, GUO Qiangqiang, LIN Qingfeng, LI Shengbo, XU Chenxiang. Fuel-saving driving strategy for connected vehicles in multiple signalized intersections. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 684-692.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.036  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I7/684
  图1 发动机万有特性图 [16]
  表1 车辆主要模型参数
  图2 最优“地图”示例
  图3 不同行驶时间下位移随时间的变化
  图4 不同行驶时间下速度随时间的变
  表2 5种行驶时间下的行驶油耗
  图5 不同行驶距离下位移随时间的变化
  图6 不同行驶距离下速度随时间的变化
  图7 多信号灯下节油策略的拆分
  图8 (网络版彩图)时间和速度节点 以及可行路径示意图
  表3 案例1交叉口和信号灯配时
  表4 案例2交叉口和信号灯配时
  图9 案例1的车辆行驶轨迹
  图10 案例2的车辆行驶轨迹
  表5 不同限速时交叉口和信号灯配时
  图11 不同限速时车辆行驶轨迹
[1] 李克强, 戴一凡, 李升波, 等. 智能网联汽车(ICV)技术的发展现状及趋势[J]. 汽车安全与节能学报, 2017, 8(1):1-14. LI K Q, DAI Y F, LI S B, et al. State-of-the-art and technical trends of intelligent and connected vehicles[J]. Journal of Automotive Safety and Energy, 2017, 8(1):1-14. (in Chinese)
[2] 李升波, 徐少兵, 王文军, 等. 汽车经济性驾驶技术及应用概述[J]. 汽车安全与节能学报, 2014, 5(2):121-131. LI S B, XU S B, WANG W J, et al. Overview of ecological driving technology and application for ground vehicles[J]. Journal of Automotive Safety and Energy, 2014, 5(2):121-131. (in Chinese)
[3] XU S B, LI S E, CHENG B, et al. Instantaneous feedback control for a fuel-prioritized vehicle cruising system on highways with a varying slope[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5):1210-1220.
[4] LI S E, HU X S, LI K Q, et al. Mechanism of vehicular periodic operation for optimal fuel economy in free-driving scenarios[J]. IET Intelligent Transport Systems, 2015, 9(3):306-313.
[5] LI S E, GUO Q Q, XIN L, et al. Fuel-saving servo-loop control for an adaptive cruise control system of road vehicles with step-gear transmission[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3):2033-2043.
[6] XU S B, LI S E, PENG H, et al. Fuel-saving cruising strategies for parallel HEVs[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4676-4686.
[7] LI S E, GUO Q Q, XU S B, et al. Performance enhanced predictive control for adaptive cruise control system considering road elevation information[J]. IEEE Transactions on Intelligent Vehicles, 2017, 2(3):150-160.
[8] LIN Q F, DU X J, LI S E, et al. Vehicle-to-infrastructure communication based eco-driving operation at multiple signalized intersections[C]//Proceedings of 2016 IEEE Vehicle Power and Propulsion Conference. Hangzhou, China, 2016:1-6.
[9] ASADI B, VAHIDI A. Predictive cruise control:Utilizing upcoming traffic signal information for improving fuel economy and reducing trip time[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3):707-714.
[10] XIA H T, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1):31-41.
[11] KAMAL A S, MUKAI M, MURATA J, et al. Model predictive control of vehicles on urban roads for improved fuel economy[J]. IEEE Transactions on Control Systems Technology, 2013, 21(3):831-841.
[12] YAMAGUCHI D, KAMAL M A S, MUKAI M, et al. Model predictive control for automobile ecological driving using traffic signal information[J]. Journal of System Design and Dynamics, 2012, 6(3):297-309.
[13] HE X Z, LIU H X, LIU X B. Optimal vehicle speed trajectory on a signalized arterial with consideration of queue[J]. Transportation Research Part C:Emerging Technologies, 2015, 61:106-120.
[14] DE NUNZIO G, DE WIT C C, MOULIN P, et al. Eco-driving in urban traffic networks using traffic signals information[J]. International Journal of Robust and Nonlinear Control, 2016, 26(6):1307-1324.
[15] XU S B, LI S E, DENG K, et al. A unified pseudospectral computational framework for optimal control of road vehicles[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4):1499-1510.
[16] 徐少兵. 车辆经济性驾驶的策略辨识与操控规律[D]. 北京:清华大学, 2016.XU S B. Strategy identification and operation rules of vehicular economical driving[D]. Beijing:Tsinghua University, 2016. (in Chinese)
[17] AHN K, RAKHA H, TRANI A, et al. Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels[J]. Journal of Transportation Engineering, 2002, 128(2):182-190.
[18] SAERENS B, RAKHA H A, DIEHL M, et al. A methodology for assessing eco-cruise control for passenger vehicles[J]. Transportation Research Part D:Transport and Environment, 2013, 19:20-27.
[19] PELKMANS L, DEBAL P, HOOD T, et al. Development of a simulation tool to calculate fuel consumption and emissions of vehicles operating in dynamic conditions[C]//Proceedings of 2004 SAE Fuels & Lubricants Meeting & Exhibition. Toulouse, France, 2004.
[20] LI S E, XU S B, KUM D. Efficient and accurate computation of model predictive control using pseudospectral discretization[J]. Neurocomputing, 2016, 177:363-372.
[1] 崔明阳, 黄荷叶, 许庆, 王建强, Takaaki SEKIGUCHI, 耿璐, 李克强. 智能网联汽车架构、功能与应用关键技术[J]. 清华大学学报(自然科学版), 2022, 62(3): 493-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn