Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 906-913    DOI: 10.16511/j.cnki.qhdxxb.2018.22.041
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
道路在城市排涝中的作用及影响因素定量评价
吕恒, 倪广恒, 曹雪健, 田富强
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Quantitative evaluation of the role of roads in urban drainage and its influencing factors
LYU Heng, NI Guangheng, CAO Xuejian, TIAN Fuqiang
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1700 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 道路在城市超标雨水排除中有着重要作用。该研究构建了强化汇流过程的精细城市雨洪模型(REDUS),以清华园南门主干道和东门主干道为对象,评价了典型暴雨情景下道路的排涝作用,以及降雨、道路纵坡和地下管网条件的影响。结果表明:在北京“721”暴雨中,道路排涝流量占比峰值达到了50%,在管网达到最大排水能力后,道路排涝占比显著增大;道路排涝作用受降雨的影响显著,与最大30 min累积降雨量之间有较好的相关关系;对于配有支路管网的道路,其排涝效果并不随着纵坡坡度单调提升,表明道路纵坡的影响与地下管网结构有关。该研究结果为海绵城市建设中如何充分考虑道路排涝作用提供了科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕恒
倪广恒
曹雪健
田富强
关键词 城市水文暴雨洪水管理道路行泄通道定量评价海绵城市    
Abstract:Urban roads are very important for draining excessive rainfall. A routing-enhanced detailed urban stormwater model (REDUS) is developed, and two main roads in the Tsinghua University campus are selected to evaluate how well the road system enhances drainage during typical storms and to quantify the impacts of rainfall type, road longitudinal slope and underground pipe systems. The results show that for the Beijing "721" stormwater event, the roads can drain as much as 50% of the total flooding discharge and the drainage increases dramatically when the pipe network reaches its maximun drainage capacity. The road drainage effectiveness is sensitive to the rainfall characteristics with the drainage correlating well with the maximum 30-min rainfall volume. Branch pipe networks do not continually increase the road drainage effectiveness as the road longitudinal slope increases which indicates that the road flows are closely connected to the flows in the underground pipes. The results will facilitate construction of Sponge City that effectively incorporates the road drainage.
Key wordsurban hydrology    stormwater management    road    discharge channel    quantitative evaluation    Sponge City
收稿日期: 2018-03-26      出版日期: 2018-10-17
基金资助:科技部国际合作专项(2013DFG72270)
通讯作者: 倪广恒,教授,E-mail:ghni@mail.tsinghua.edu.cn     E-mail: ghni@mail.tsinghua.edu.cn
引用本文:   
吕恒, 倪广恒, 曹雪健, 田富强. 道路在城市排涝中的作用及影响因素定量评价[J]. 清华大学学报(自然科学版), 2018, 58(10): 906-913.
LYU Heng, NI Guangheng, CAO Xuejian, TIAN Fuqiang. Quantitative evaluation of the role of roads in urban drainage and its influencing factors. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 906-913.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.041  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/906
  图1 两条道路与观测点的位置及道路 管网结构
  图2 强化汇流过程的精细城市雨洪模型(REDUS)框架
  图3 流量和积水验证结果(2017G08G12场次)
  表1 降雨场次特征
  图4 多纵坡条件下的道路纵剖面
  图5 3场典型暴雨情景下的道路排涝流量占比
  图6 “721”暴雨情景下的道路积水深
  图7 道路排涝总量占比与最大时段累积 降雨量的相关关系
  表2 北京市设计暴雨情景下的道路排涝总量占比
  图8 “721”暴雨情景下纵坡对于道路排涝 总量占比的影响
[1] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6):684-690. SU B N, HUANG H, ZHANG N. Dynamic urban waterlogging risk assessment method based on scenario simulations[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6):684-690. (in Chinese)
[2] 车伍, 杨正, 赵杨, 等. 中国城市内涝防治与大小排水系统分析[J]. 中国给水排水, 2013, 29(16):13-19. CHE W, YANG Z, ZHAO Y, et al. Analysis of urban flooding control and major and minor drainage systems in China[J]. China Water and Wastewater, 2013, 29(16):13-19. (in Chinese)
[3] MEIERDIERCKS K L, KOLOZSVARY M B, RHOADS K P, et al. The role of land surface versus drainage network characteristics in controlling water quality and quantity in a small urban watershed[J]. Hydrological Processes, 2017, 31(24):4384-4397.
[4] GOLDSHLEGER N, KARNIBAD L, SHOSHANY M, et al. Generalising urban runoff and street network density relationship:A hydrological and remote-sensing case study in Israel[J]. Urban Water Journal, 2012, 9(3):189-197.
[5] MEIERDIERCKS K L, SMITH J A, BAECK M L, et al. Analyses of urban drainage network structure and its impact on hydrologic response[J]. Journal of the American Water Resources Association, 2010, 46(5):932-943.
[6] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城镇内涝防治技术规范:GB 51222-2017[S]. 北京:中国计划出版社, 2017. Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical code for urban flooding prevention and control:GB 51222-2017[S]. Beijing:China Planning Press, 2017. (in Chinese)
[7] 张辰, 吕永鹏, 陈嫣. 《城镇内涝防治技术规范》解读[J]. 给水排水, 2017, 53(8):55-59. ZHANG C, LÜ Y P, CHEN Y. Interpretation of "Technical code for urban flooding prevention and control"[J]. Water and Wastewater Engineering, 2017, 53(8):55-59. (in Chinese)
[8] Urban Drainage and Flood Control District. Urban storm drainage criteria manual[M]. Denver, USA:Urban Drainage and Flood Control District, 2008.
[9] 李俊奇, 王耀堂, 王文亮, 等. 城市道路用于大排水系统的规划设计方法与案例[J]. 给水排水, 2017, 43(4):18-24. LI J Q, WANG Y T, WANG W L, et al. Urban roads for major drainage system planning-design methods and cases[J]. Water and Wastewater Engineering, 2017, 43(4):18-24. (in Chinese)
[10] 王耀堂. 道路用于城市大排水系统规划设计方法与案例研究[D]. 北京:北京建筑大学, 2017. WANG Y T. Planning-design methods and case study on major drainage system using urban roads[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2017. (in Chinese)
[11] 李小宁. 城市道路雨水排放及控制效果影响因素分析[D]. 北京:北京建筑大学, 2015. LI X N. Analysis on factors of urban road runoff discharge and control[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2015. (in Chinese)
[12] 梁小光, 程松青. 道路坡度对路面排水的影响研究[J]. 给水排水, 2018, 44(3):9-15. LIANG X G, CHENG S Q. Study on the influence of roadway slope on pavement drainage[J]. Water and Wastewater Engineering, 2018, 44(3):9-15. (in Chinese)
[13] 邵银霞, 李巧琳, 李光炽. 城市雨洪排涝计算模型研究[J]. 人民长江, 2017, 48(8):5-9. SHAO Y X, LI Q L, LI G Z. Study on numerical calculation model of urban rain flood drainage[J]. Yangtze River, 2017, 48(8):5-9. (in Chinese)
[14] BAZIN P, NAKAGAWA H, KAWAIKE K, et al. Modeling flow exchanges between a street and an underground drainage pipe during urban floods[J]. Journal of Hydraulic Engineering, 2014, 140(10):04014051.
[15] PINA R D, OCHOA-RODRIGUEZ S, SIMOES N E, et al. Semi-vs. fully-distributed urban stormwater models:Model set up and comparison with two real case studies[J]. Water, 2016, 8:58.
[16] NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model:Performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2):040170022.
[17] ELGA S, LAN B, OKKE B. Hydrological modelling of urbanized catchments:A review and future directions[J]. Journal of Hydrology, 2015, 529(1):62-81.
[18] 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战:Ⅱ.城市雨洪模拟与管理[J]. 水科学进展, 2014, 25(5):752-764. SONG X M, ZHANG J Y, WANG G Q, et al. Development and challenges of urban hydrology in a changing environment:Ⅱ. Urban stormwater modeling and management[J]. Advances in Water Science, 2014, 25(5):752-764. (in Chinese)
[19] 周思斯, 杜鹏飞, 逄勇. 城市暴雨管理模型应用研究进展[J]. 水利水电科技进展, 2014, 34(6):89-97. ZHOU S S, DU P F, PANG Y. Progress on application of storm water management model[J]. Advances in Science and Technology of Water Resources, 2014, 34(6):89-97. (in Chinese)
[20] PAN A, HOU A, TIAN F, et al. Hydrologically enhanced distributed urban drainage model and its application in Beijing City[J]. Journal of Hydrologic Engineering, 2012, 17(6):667-678.
[21] LI D, WANG X, XIE Y, et al. A multi-level and modular model for simulating the urban flooding and its application to Tianjin City[J]. Natural Hazards, 2016, 82(3):1947-1965.
[22] JENSON S K, DOMINGUE J O. Extracting topographic structure from digital elevation data for geographic information system analysis[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11):1593-1600.
[23] DIGMAN C, BALMFORTH D, KELLAGHER R, et al. Designing for exceedance in urban drainage:Good practice[M]. London, UK:CIRIA, 2006.
[24] 中华人民共和国住房和城乡建设部. 城市道路工程设计规范(2016年版):CJJ 37-2012[S]. 北京:中国建筑工业出版社, 2016. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of urban road engineering (2016 ed):CJJ 37-2012[S]. Beijing:China Architecture and Building Press, 2016. (in Chinese)
[1] 程新月, 王昊, 李智, 周晋军. 基于OPUT的城市LID设施防涝布设方法[J]. 清华大学学报(自然科学版), 2024, 64(4): 638-648.
[2] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[3] 邵薇薇, 刘家宏, 王开博, 苏鑫, 邵蕊, 梅超, 李泽锦. 基于情景模拟的城市洪涝交通影响评估[J]. 清华大学学报(自然科学版), 2022, 62(10): 1591-1605.
[4] 孙恩鑫, 殷玉明, 辛喆, 李升波, 何举刚, 孔周维, 刘秀鹏. 微小加速度下汽车质量-道路坡度自适应估计[J]. 清华大学学报(自然科学版), 2022, 62(1): 125-132.
[5] 沈阳, 徐苑昕, 吴璟. 海绵城市建设对住房价格影响的定量分析——以四川省遂宁市为例[J]. 清华大学学报(自然科学版), 2021, 61(6): 573-581.
[6] 印定坤,陈正侠,李骐安,贾海峰,刘正权,沈雷. 降雨特征对多雨城市海绵改造小区径流控制效果的影响[J]. 清华大学学报(自然科学版), 2021, 61(1): 50-56.
[7] 宋青松, 张超, 陈禹, 王兴莉, 杨小军. 组合全卷积神经网络和条件随机场的道路分割[J]. 清华大学学报(自然科学版), 2018, 58(8): 725-731.
[8] 董智超, 王霄锋, 楼位鹏, 黄元毅, 钟明. 微型客车后驱动桥多轴耦合疲劳试验仿真[J]. 清华大学学报(自然科学版), 2018, 58(2): 212-216.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn