Abstract:Urban roads are very important for draining excessive rainfall. A routing-enhanced detailed urban stormwater model (REDUS) is developed, and two main roads in the Tsinghua University campus are selected to evaluate how well the road system enhances drainage during typical storms and to quantify the impacts of rainfall type, road longitudinal slope and underground pipe systems. The results show that for the Beijing "721" stormwater event, the roads can drain as much as 50% of the total flooding discharge and the drainage increases dramatically when the pipe network reaches its maximun drainage capacity. The road drainage effectiveness is sensitive to the rainfall characteristics with the drainage correlating well with the maximum 30-min rainfall volume. Branch pipe networks do not continually increase the road drainage effectiveness as the road longitudinal slope increases which indicates that the road flows are closely connected to the flows in the underground pipes. The results will facilitate construction of Sponge City that effectively incorporates the road drainage.
吕恒, 倪广恒, 曹雪健, 田富强. 道路在城市排涝中的作用及影响因素定量评价[J]. 清华大学学报(自然科学版), 2018, 58(10): 906-913.
LYU Heng, NI Guangheng, CAO Xuejian, TIAN Fuqiang. Quantitative evaluation of the role of roads in urban drainage and its influencing factors. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 906-913.
[1] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6):684-690. SU B N, HUANG H, ZHANG N. Dynamic urban waterlogging risk assessment method based on scenario simulations[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(6):684-690. (in Chinese) [2] 车伍, 杨正, 赵杨, 等. 中国城市内涝防治与大小排水系统分析[J]. 中国给水排水, 2013, 29(16):13-19. CHE W, YANG Z, ZHAO Y, et al. Analysis of urban flooding control and major and minor drainage systems in China[J]. China Water and Wastewater, 2013, 29(16):13-19. (in Chinese) [3] MEIERDIERCKS K L, KOLOZSVARY M B, RHOADS K P, et al. The role of land surface versus drainage network characteristics in controlling water quality and quantity in a small urban watershed[J]. Hydrological Processes, 2017, 31(24):4384-4397. [4] GOLDSHLEGER N, KARNIBAD L, SHOSHANY M, et al. Generalising urban runoff and street network density relationship:A hydrological and remote-sensing case study in Israel[J]. Urban Water Journal, 2012, 9(3):189-197. [5] MEIERDIERCKS K L, SMITH J A, BAECK M L, et al. Analyses of urban drainage network structure and its impact on hydrologic response[J]. Journal of the American Water Resources Association, 2010, 46(5):932-943. [6] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 城镇内涝防治技术规范:GB 51222-2017[S]. 北京:中国计划出版社, 2017. Ministry of Housing and Urban-Rural Development of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Technical code for urban flooding prevention and control:GB 51222-2017[S]. Beijing:China Planning Press, 2017. (in Chinese) [7] 张辰, 吕永鹏, 陈嫣. 《城镇内涝防治技术规范》解读[J]. 给水排水, 2017, 53(8):55-59. ZHANG C, LÜ Y P, CHEN Y. Interpretation of "Technical code for urban flooding prevention and control"[J]. Water and Wastewater Engineering, 2017, 53(8):55-59. (in Chinese) [8] Urban Drainage and Flood Control District. Urban storm drainage criteria manual[M]. Denver, USA:Urban Drainage and Flood Control District, 2008. [9] 李俊奇, 王耀堂, 王文亮, 等. 城市道路用于大排水系统的规划设计方法与案例[J]. 给水排水, 2017, 43(4):18-24. LI J Q, WANG Y T, WANG W L, et al. Urban roads for major drainage system planning-design methods and cases[J]. Water and Wastewater Engineering, 2017, 43(4):18-24. (in Chinese) [10] 王耀堂. 道路用于城市大排水系统规划设计方法与案例研究[D]. 北京:北京建筑大学, 2017. WANG Y T. Planning-design methods and case study on major drainage system using urban roads[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2017. (in Chinese) [11] 李小宁. 城市道路雨水排放及控制效果影响因素分析[D]. 北京:北京建筑大学, 2015. LI X N. Analysis on factors of urban road runoff discharge and control[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2015. (in Chinese) [12] 梁小光, 程松青. 道路坡度对路面排水的影响研究[J]. 给水排水, 2018, 44(3):9-15. LIANG X G, CHENG S Q. Study on the influence of roadway slope on pavement drainage[J]. Water and Wastewater Engineering, 2018, 44(3):9-15. (in Chinese) [13] 邵银霞, 李巧琳, 李光炽. 城市雨洪排涝计算模型研究[J]. 人民长江, 2017, 48(8):5-9. SHAO Y X, LI Q L, LI G Z. Study on numerical calculation model of urban rain flood drainage[J]. Yangtze River, 2017, 48(8):5-9. (in Chinese) [14] BAZIN P, NAKAGAWA H, KAWAIKE K, et al. Modeling flow exchanges between a street and an underground drainage pipe during urban floods[J]. Journal of Hydraulic Engineering, 2014, 140(10):04014051. [15] PINA R D, OCHOA-RODRIGUEZ S, SIMOES N E, et al. Semi-vs. fully-distributed urban stormwater models:Model set up and comparison with two real case studies[J]. Water, 2016, 8:58. [16] NIAZI M, NIETCH C, MAGHREBI M, et al. Storm water management model:Performance review and gap analysis[J]. Journal of Sustainable Water in the Built Environment, 2017, 3(2):040170022. [17] ELGA S, LAN B, OKKE B. Hydrological modelling of urbanized catchments:A review and future directions[J]. Journal of Hydrology, 2015, 529(1):62-81. [18] 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战:Ⅱ.城市雨洪模拟与管理[J]. 水科学进展, 2014, 25(5):752-764. SONG X M, ZHANG J Y, WANG G Q, et al. Development and challenges of urban hydrology in a changing environment:Ⅱ. Urban stormwater modeling and management[J]. Advances in Water Science, 2014, 25(5):752-764. (in Chinese) [19] 周思斯, 杜鹏飞, 逄勇. 城市暴雨管理模型应用研究进展[J]. 水利水电科技进展, 2014, 34(6):89-97. ZHOU S S, DU P F, PANG Y. Progress on application of storm water management model[J]. Advances in Science and Technology of Water Resources, 2014, 34(6):89-97. (in Chinese) [20] PAN A, HOU A, TIAN F, et al. Hydrologically enhanced distributed urban drainage model and its application in Beijing City[J]. Journal of Hydrologic Engineering, 2012, 17(6):667-678. [21] LI D, WANG X, XIE Y, et al. A multi-level and modular model for simulating the urban flooding and its application to Tianjin City[J]. Natural Hazards, 2016, 82(3):1947-1965. [22] JENSON S K, DOMINGUE J O. Extracting topographic structure from digital elevation data for geographic information system analysis[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11):1593-1600. [23] DIGMAN C, BALMFORTH D, KELLAGHER R, et al. Designing for exceedance in urban drainage:Good practice[M]. London, UK:CIRIA, 2006. [24] 中华人民共和国住房和城乡建设部. 城市道路工程设计规范(2016年版):CJJ 37-2012[S]. 北京:中国建筑工业出版社, 2016. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of urban road engineering (2016 ed):CJJ 37-2012[S]. Beijing:China Architecture and Building Press, 2016. (in Chinese)