Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (1): 66-72    DOI: 10.16511/j.cnki.qhdxxb.2018.22.042
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
各向异性高强钢成形极限曲线有限元预测
桂良进, 张晓前, 周驰, 范子杰
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Finite element prediction of the forming limit curve for anisotropic high-strength steel
GUI Liangjin, ZHANG Xiaoqian, ZHOU Chi, FAN Zijie
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(6718 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用高强钢是实现汽车轻量化的有效途径之一,而成形极限曲线是用于判断金属板料成形效果的有效工具之一。为了降低实验成本、缩短开发周期,该文提出了一种考虑各向异性,以最大凸模力准则作为失稳判据,对高强钢Q490C的成形极限曲线进行仿真预测的方法。使用相应公式对仿真数据进行了拟合。仿真结果与试验数据得到的模型拟合曲线吻合得较好。将有限元预测得到的成形极限曲线的截距点与Keeler公式进行对比,二者一致性较好。该文采用的成形极限曲线的有限元预测方法可以较准确地预测各向异性板料的成形极限曲线,为板料冲压成形等后续工作奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂良进
张晓前
周驰
范子杰
关键词 成形极限曲线有限元预测试验Keeler公式    
Abstract:High-strength steel is an effective way to reduce automobile masses, with the forming limit curve of the steel as an important tool for evaluating the sheet metal forming. A forming limit curve simulation prediction method for the anisotropic high-strength steel Q490C is given here based on the maximum punch force criterion to reduce experiment costs and shorten the development cycle. The results are then fit to correlations. The simulations agree well with experimental data. The simulated curve intercept agrees well with the Keeler's formula. Thus, the finite element predictions of the forming limit curve used in this paper can accurately predict the forming limit curve for anisotropic sheets, which lays a foundation for blank stamping forming.
Key wordsforming limit curve    finite element prediction    experiment    Keeler's formula
收稿日期: 2018-02-08      出版日期: 2019-01-16
基金资助:国家自然科学基金资助项目(51475255)
通讯作者: 范子杰,教授,E-mail:zjfan@tsinghua.edu.cn     E-mail: zjfan@tsinghua.edu.cn
引用本文:   
桂良进, 张晓前, 周驰, 范子杰. 各向异性高强钢成形极限曲线有限元预测[J]. 清华大学学报(自然科学版), 2019, 59(1): 66-72.
GUI Liangjin, ZHANG Xiaoqian, ZHOU Chi, FAN Zijie. Finite element prediction of the forming limit curve for anisotropic high-strength steel. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 66-72.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.042  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I1/66
  图1 FLC试验试件尺寸示意图
  图2 成形极限曲线仿真模具示意图
  图3 (网络版彩图)成形极限曲线仿真有限元模型
  图4 板料有限元模型示意图
  图5 凹模有限元模型示意图
  图6 压边圈有限元模型示意图
  图7 凸模有限元模型示意图
  表1 试验测试结果统计
  图8 凸模力 时间曲线
  图9 板料失稳时截面线上的第1主应变分布
  图10 (网络版彩图)FLC试验机与试件
  图11 FLC试验数据和拟合模型曲线
  图12 (网络版彩图)试件有限元仿真 Mises等 效应力云图
  图13 (网络版彩图)试件有限元仿真等效塑性应变云图
  图14 (网络版彩图)试件有限元仿真减薄率云图
  图15 试验拟合成形极限曲线与仿真对比图
  图16 各向同性材料与各向异性材料仿真对比
[1] LI Y X, LIN Z Q, JIANG A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials & Design, 2003, 24(3):177-182.
[2] 范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16. FAN Z J, GUI L J, SU R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16. (in Chinese)
[3] ZHANG Y, LAI X M, ZHU P, et al. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006, 27(1):64-68.
[4] KEELER S P, BACKHOFEN W A. Plastic instability and fracture in sheet stretched over rigid punches[J]. ASM Transactions Quarterly, 1964, 56:25-48.
[5] GOODWIN G M. Application of strain analysis to sheet metal forming problems in the press shop[R]. SAE Paper, No. 680093. Warrendale, USA:SAE, 1968.
[6] BANABIC D, LAZARESCU L, PARAIANU L, et al. Development of a new procedure for the experimental determination of the forming limit curves[J]. CIRP Annals, 2013, 62(1):255-258.
[7] 卢志文, 汪凌云, 邱晓刚, 等. 镁合金板材成形极限图(FLD)的实验研究[J]. 材料导报, 2005, 19(6):108-110. LU Z W, WANG L Y, QIU X G, et al. Experiment research on the forming limit diagrams (FLD) of magnesium alloy sheet[J]. Materials Review, 2005, 19(6):108-110. (in Chinese)
[8] NARAYANASAMY R, NARAYANAN C S. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness[J]. Materials & Design, 2008, 29(7):1467-1475.
[9] MOSHKSAR M M, MANSORZADEH S. Determination of the forming limit diagram for Al 3105 sheet[J]. Journal of Materials Processing Technology, 2003, 141(1):138-142.
[10] PARMAR A, MELLOR P B. Predictions of limit strains in sheet metal using a more general yield criterion[J]. International Journal of Mechanical Sciences, 1978, 20(6):385-391.
[11] KURODA M, TVERGAARD V. Forming limit diagrams for anisotropic metal sheets with different yield criteria[J]. International Journal of Solids and Structures, 2000, 37(37):5037-5059.
[12] KOROUYEH R S, NAEINI H M, LIAGHAT G. Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2053-2061.
[13] SITU Q, JAIN M K, METZGER D R. Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach[J]. International Journal of Mechanical Sciences, 2011, 53(9):707-719.
[14] DJAVANROODI F, DEROGAR A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets[J]. Materials & Design, 2010, 31(10):4866-4875.
[15] ASSEMPOUR A, NURCHESHMEH M. The influence of material properties on the shape and level of the forming limit diagram[R/OL]. (2003-01-11). https://doi.org/10.4271/2003-01-1149.
[16] CAMPOS H B, BUTUC M C, GRÁCIO J J, et al. Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel[J]. Journal of Materials Processing Technology, 2006, 179(1-3):56-60.
[17] SAMUEL M. Numerical and experimental investigations of forming limit diagrams in metal sheets[J]. Journal of Materials Processing Technology, 2004, 153-154:424-431.
[18] BONG H J, BARLAT F, LEE M G, et al. The forming limit diagram of ferritic stainless steel sheets:Experiments and modeling[J]. International Journal of Mechanical Sciences, 2012, 64(1):1-10.
[19] BARLAT F, LIAN K. Plastic behavior and stretchability of sheet metals. Part I:A yield function for orthotropic sheets under plane stress conditions[J]. International Journal of Plasticity, 1989, 5(1):51-66.
[20] OLEKSIK V, BREAZ R E, PASCU A M. Finite element method simulation for rectangular parts obtained by incremental sheet metal forming process[C]//Proceedings of the 15th International Conference on Manufacturing Systems. Bucharest, Romania:Editura Academiei Române, 2006.
[21] JURENDIĆ S, GAIANI S. Deep drawing simulation of α-titanium alloys using LS-DYNA[C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, France, 2011.
[22] BUTUC M C, DA ROCHA A B, GRACIO J J, et al. A more general model for forming limit diagrams prediction[J]. Journal of Materials Processing Technology, 2002, 125-126:213-218.
[23] 王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学, 2011. WANG H. Acquisition method of forming limit diagram and its application in sheet metal forming[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
[24] 张成祥, 陈明和, 雷晓晶, 等. GH163合金成形极限图及应用[J]. 塑性工程学报, 2016, 23(1):93-98. ZHANG C X, CHEN M H, LEI X J, et al. Forming limit diagram of superalloy GH163 sheet and application[J]. Journal of Plasticity Engineering, 2016, 23(1):93-98. (in Chinese)
[1] 陈浩, 袁良信, 孙涛, 郑四发, 连小珉. 电动轮汽车转矩矢量控制系统试验平台[J]. 清华大学学报(自然科学版), 2019, 59(2): 162-168.
[2] 韩飞, 周子浩, 王允. Q&P980超高强钢的循环加载性能和微观组织表征[J]. 清华大学学报(自然科学版), 2018, 58(7): 677-683.
[3] 王腾, 胡岱松, 张嘎. 土石混合料力学特性的试验研究[J]. 清华大学学报(自然科学版), 2018, 58(5): 456-460.
[4] 陈宇龙, 张科. 井点降水法处理可液化地基的振动台试验[J]. 清华大学学报(自然科学版), 2018, 58(2): 192-197.
[5] 张婉鑫, 朱纪洪. 大迎角非定常气动参数辨识研究[J]. 清华大学学报(自然科学版), 2017, 57(7): 673-679.
[6] 张嘎, 罗方悦, 刘扬, 王爱霞. 水位骤降环境土工织物加固土坡的离心模型试验[J]. 清华大学学报(自然科学版), 2017, 57(7): 728-731,737.
[7] NGUYEN Truong Sinh, 宋健, 方圣楠, 宋海军, 台玉琢, 李飞. 电动汽车动力保持型机械式自动两挡变速器仿真与试验[J]. 清华大学学报(自然科学版), 2017, 57(10): 1106-1113.
[8] 李颖杰, 李环宇, 吴林峰, 李春文. 微型涡喷发动机推进系统的试验建模[J]. 清华大学学报(自然科学版), 2017, 57(1): 107-112.
[9] 王腾, 张嘎. 块体加固土体大型直剪试验[J]. 清华大学学报(自然科学版), 2016, 56(11): 1209-1212.
[10] 杨军, 张大峰. 考虑固结过程的单桩负摩擦数值模型[J]. 清华大学学报(自然科学版), 2015, 55(12): 1276-1280.
[11] 王天舒, 张鹏飞. 充液卫星地面物理仿真方法[J]. 清华大学学报(自然科学版), 2015, 55(10): 1130-1134.
[12] 郝丽,潘宇东,李波,袁建生. 利用约束方程法计算ITER中GDC电极所受的电磁力[J]. 清华大学学报(自然科学版), 2015, 55(1): 141-144.
[13] 吴静,姜艳,曹知平,王广启,左剑恶,王凯军. 剩余污泥低温热水解中试[J]. 清华大学学报(自然科学版), 2015, 55(1): 93-97.
[14] 钱稼茹,张扬,张微敬. 双钢管高强混凝土短柱偏心受压性能试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 1-7.
[15] 邓焱,邢超,张嵘,周斌. 高效率的MEMS陀螺管芯动态特性测试方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 811-814.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn