Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (9): 773-780    DOI: 10.16511/j.cnki.qhdxxb.2018.22.044
  自动化 本期目录 | 过刊浏览 | 高级检索 |
基于空间三维物体重构的光场显示技术综述
谭祺瑞1, 路海明1, 卢增祥2, 吉吟东1
1. 清华大学 信息技术研究院, 北京 100084;
2. 北京永新视博数字电视技术有限公司, 北京 100085
Survey on light-field displays based on 3D object reconstructions
TAN Qirui1, LU Haiming1, LU Zengxiang2, JI Yindong1
1. Research Institute of Information Technology, Tsinghua University, Beijing 100084, China;
2. Beijing Novel-SuperTV Digital TV Technology Co., Ltd., Beijing 100085, China
全文: PDF(9609 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 目前的三维显示技术,如视差屏障显示、柱镜光栅显示、多投影显示、扫描立体显示,通过运用双目视差、视觉暂留效应使人眼获得三维图像。这些显示技术将物体显示在二维平面上,并不是在空间中重构出三维物体,丢失了深度信息,易引起聚焦辐辏调节冲突。体三维显示和全息显示可以在空间中重构出三维物体,但所需处理的数据量巨大,目前在计算速度、传输速率等方面都有技术限制。基于空间三维物体重构的光场显示技术利用光场在空间中重构出三维物体,主要包括层叠光场显示、快门光场显示、集成成像光场显示和矢量光场显示。该文分析了各种光场显示技术的原理和特点,认为矢量光场显示技术具有广阔的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭祺瑞
路海明
卢增祥
吉吟东
关键词 光场显示三维物体重构聚焦辐辏虚拟现实    
Abstract:Present 3D displays, such as parallax barrier displays, lenticular lens displays, multi-projection displays, and scanning stereoscopic displays, mimic human eyes to obtain 3D images using binocular parallax and persistence of vision. However, locating the 3D images on 2D planes instead of reconstructing the 3D object losses the depth information and causes the vergence-accommodation conflict. 3D objects can be reconstructed using volumetric and holographic displays. However, these require processing of a large amount of data so there are technical limitations due to computing speeds and transmission rates. This paper introduces light-field displays based on 3D object reconstructions. The 3D object is reconstructed using the light field, such as the stacked light field display, shutter light field display, integrated imaging display, or vector light field display. The principles and characteristics of the light field displays are analyzed with the vector light field display having excellent prospects for future development.
Key wordslight field displays    3D object reconstruction    focus-convergence    virtual reality
收稿日期: 2018-04-27      出版日期: 2018-09-19
基金资助:苏州-清华创新引领行动专项(20171470066)
通讯作者: 路海明,副研究员,E-mail:luhm@tsinghua.edu.cn     E-mail: luhm@tsinghua.edu.cn
引用本文:   
谭祺瑞, 路海明, 卢增祥, 吉吟东. 基于空间三维物体重构的光场显示技术综述[J]. 清华大学学报(自然科学版), 2018, 58(9): 773-780.
TAN Qirui, LU Haiming, LU Zengxiang, JI Yindong. Survey on light-field displays based on 3D object reconstructions. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 773-780.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.044  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I9/773
  表1 4种光场显示技术与传统显示技术对比 [16, 1820]
  图1 4个维度的光场 [23]
  图2 (网络版彩图)层叠光场显示 [18]
  图3 (网络版彩图)权重压缩光场显示[25]
  图4 层叠光场显示头盔[26]
  图5 两层液晶显示屏层叠光场显示原理[27]
  图6 (网络版彩图)两层液晶显示屏层叠光场显示的成像效果[26]
  图7 人眼成像原理
  图8 (网络版彩图)快门光场显示系统[32]
  图9 快门光场显示原理[32]
  图10 无快门(左)和有快门(右)的显示效果[32]
  图11 集成成像光场显示技术[34]
  图12 集成成像光场显示原理[34]
   图13 集成成像光场显示增加视角方案
  图14 (网络版彩图)集成成像光场显示不同角度3D图的观看效果[39]
  图15 集成成像光场显示增加景深方案
  图16 定向背光体[42]
  图17 (网络版彩图)量子光子成像器(QPI)[20, 4344]
[1] SHIBATA T, KIM J, HOFFMAN D M, et al. Visual discomfort with stereo displays:Effects of viewing distance and direction of vergence-accommodation conflict[J]. Proceedings of SPIE, 2011, 7863:78630P-1-78630P-9.
[2] KIM J, KANE D, BANKS M S. Visual discomfort and the temporal properties of the vergence-accommodation conflict[J]. Proceedings of SPIE, 2012, 8288:828811.
[3] KIM J, KANE D, BANKS M S. The rate of change of vergence-accommodation conflict affects visual discomfort[J]. Vision Research, 2014, 105:159-165.
[4] YU X B, SANG X Z, XING S J, et al. Natural three-dimensional display with smooth motion parallax using active partially pixelated masks[J]. Optics Communications, 2014, 313:146-151.
[5] 夏振平, 李晓华, 陈磊, 等. 基于双目视差的立体显示运动模糊评价方法研究[J]. 光学学报, 2015, 35(1):145-151. XIA Z P, LI X H, CHEN L, et al. Study on evaluation of motion blur in binocular parallax based stereoscopic displays[J]. Acta Optica Sinica, 2015, 35(1):145-151. (in Chinese)
[6] VAN BERKEL C, CLARKE J A. Characterization and optimization of 3D-LCD module design[J]. Proceedings of the SPIE, 1997, 3012:179-186.
[7] MATUSIK W, PFISTER H. 3D TV:A scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes[J]. ACM Transactions on Graphics, 2004, 23(3):814-824.
[8] NAGO N, SHINOZAKI Y, TAKAKI Y. SMV256:Super multiview display with 256 viewpoints using multiple projections of lenticular displays[J]. Proceedings of SPIE, 2010, 7524(1):75241S-1.
[9] UCHIDA S, TAKAKI Y. 360-Degree three-dimensional table-screen display using small array of high-speed projectors[J]. Proceedings of SPIE, 2012, 8288:82880D.
[10] YENDO T, FUJⅡ T, TANIMOTO M, et al. The Seelinder:Cylindrical 3D display viewable from 360 degrees[J]. Journal of Visual Communication and Image Representation, 2010, 21(5-6):586-594.
[11] YOSHIDA H, MAEDA T, SHIBATA S. Three dimensional video display device:WO, US9047793. 2015.
[12] XIA X, LIU X, LI H, et al. A 360-degree floating 3D display based on light field regeneration[J]. Optics Express, 2013, 21(9):11237-11247.
[13] SULLIVAN A. DepthCube solid-state 3D volumetric display[J]. Proceedings of SPIE, 2004, 5291(1):279-284.
[14] CHUN W S, NAPOLI J, COSSAIRT O S, et al. Spatial 3-D infrastructure:Display-independent software framework, high-speed rendering electronics, and several new displays[J]. Proceedings of SPIE, 2005, 5664:302-312.
[15] KLUG M, BURNETT T, FANCELLO A, et al. 32.4:A scalable, collaborative, interactive light-field display system[J]. SID, 2013, 44(1):412-415.
[16] KOZACKI T. On resolution and viewing of holographic image generated by 3D holographic display[J]. Optics Express, 2010, 18(26):27118-27129.
[17] ROSEN J, KATZ B, BROOKER G. Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms[J]. 3D Research, 2010, 1(1):28-35.
[18] WETZSTEIN G, LANMAN D, HEIDRICH W, et al. Layered 3D:Tomographic image synthesis for attenuation-based light field and high dynamic range displays[J]. ACM Transactions on Graphics, 2011, 30(4):1-12.
[19] TENG D D, LIU L L. P-95:Full resolution 3D display on computer screen free from accommodation-convergence conflict[J]. SID, 2017, 48(1):1607-1609.
[20] EL-GHOROURY H S, ALPASLAN Z Y. Quantum photonic imager (QPI):A new display technology and its applications[C]//Proceedings of the International Display Workshops. Niigata, Japan, 2014:1292-1295.
[21] GERSHUN A. The light field[J]. Journal of Mathematics and Physics, 1939, 18(1-4):51-151.
[22] ADELSON E H, BERGEN J R. The plenoptic function and the elements of early vision[M]//LANDY M, MOVSHON J A, eds. Computational models of visual processing. Cambridge, USA:MIT Press, 1991:3-20.
[23] LEVOY M, HANRAHAN P. Light field rendering[C]//Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New Orleans, USA, 1996:31-42.
[24] LANMAN D, WETZSTEIN G, HIRSCH M, et al. Polarization fields:Dynamic light field display using multi-layer LCDs[J]. ACM Transactions on Graphics, 2011, 30(6):1-10.
[25] CHEN D, SANG X Z, YU X B, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Optics Express, 2016, 24(26):29781-29793.
[26] HUANG F C, CHEN K, WETZSTEIN G. The light field stereoscope:Immersive computer graphics via factored near-eye light field displays with focus cues[J]. ACM Transactions on Graphics, 2015, 34(4):60.
[27] 丁俊. 基于多层液晶的近眼三维显示研究[D]. 杭州:浙江大学, 2016. DING J. The research of near-eye 3D displays based on multi-layer LCDs[D]. Hangzhou, China:Zhejiang University, 2016. (in Chinese)
[28] 苏忱, 李海峰. 应用于混合现实的光场三维显示研究综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6):905-912. SU C, LI H F. Survey on light field 3D display applied to mixed reality[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6):905-912. (in Chinese)
[29] HONG J, KIM Y, CHOI H J, et al. Three-dimensional display technologies of recent interest:Principles, status, and issues[J]. Applied Optics, 2011, 50(34):87-115.
[30] GENG J. Three-dimensional display technologies[J]. Advances in Optics and Photonics, 2013, 5(4):456-535.
[31] LIU L L, PANG Z Y, TENG D D. Super multi-view three-dimensional display technique for portable devices[J]. Optics Express, 2016, 24(5):4421-4430.
[32] SUN D E, WANG C X, TENG D D, et al. Three-dimensional display on computer screen free from accommodation-convergence conflict[J]. Optics Communications, 2017, 390:36-40.
[33] LIPPMANN G. Épreuves réversibles donnant la sensation du relief[J]. Journal De Physique Théorique et Appliquée, 1908, 7(1):821-825.
[34] LEE B, PARK J H, MIN S W. Three-dimensional display and information processing based on integral imaging[M]//POON T C, ed. Digital holography and three-dimensional display. Boston, USA:Springer, 2006:333-378.
[35] SHIN D H, KIM E S, LEE B. Computational reconstruction of three-dimensional objects in integral imaging using lenslet array[J]. Japanese Journal of Applied Physics, 2005, 44(11):7735-8259.
[36] KIM Y, PARK J H, MIN S W, et al. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array[J]. Applied Optics, 2005, 44(4):546-552.
[37] SHIN D H, LEE B, KIM E S. Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens[J]. Applied Optics, 2006, 45(28):7375-7381.
[38] PARK G, HONG J, KIM Y, et al. Enhancement of viewing angle and viewing distance in integral imaging by head tracking[C]//Digital Holography and Three-Dimensional Imaging 2009. Vancouver, Canada, 2009:DWB27.
[39] YU X B, SANG X Z, GAO X, et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues[J]. Optics Express, 2015, 23(20):25950-25958.
[40] KIM J, MIN S W, LEE B. Floated image mapping for integral floating display[J]. Optics Express, 2008, 16(12):8549-8556.
[41] KIM Y, CHOI H, KIM J, et al. Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers[J]. Applied Optics, 2007, 46(18):3766-3773.
[42] FATTAL D, PENG Z, TRAN T, et al. A multi-directional backlight for a wide-angle, glasses-free 3D display[C]//Proceedings of 2013 IEEE Photonics Conference. Bellevue, USA, 2013:24-25.
[43] EL-GHOROURY H S, CHUANG C L, ALPASLAN Z Y. 26.1:Invited paper:Quantum photonic imager (QPI):A novel display technology that enables more than 3D applications[J]. SID, 2015, 46(1):371-374.
[44] ALPASLAN Z Y, EI-GHOROURY H S. Small form factor full parallax tiled light field display[J]. Proceedings of the SPIE, 2015, 9391:93910E-1-93910E-10.
[45] LIN D, MELLI M, POLIAKOV E, et al. Optical metasurfaces for high angle steering at visible wavelengths[J]. Scientific Reports, 2017, 7:2286.
[46] LALANNE P, CHAVEL P. Metalenses at visible wavelengths:Past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3):1600295.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn