Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (11): 992-999    DOI: 10.16511/j.cnki.qhdxxb.2018.22.049
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
基于Gauss烟团模型的大气扩散数据同化方法
黎岢, 梁漫春, 苏国锋
清华大学 工程物理系, 公共安全研究院, 北京 100084
Data assimilation method for atmospheric dispersion based on a Gaussian puff model
LI Ke, LIANG Manchun, SU Guofeng
Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
全文: PDF(4135 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 发生核事故后,可以通过模型迅速预测泄漏的放射性物质的大气扩散情况,但释放源项、气象等参数的不确定性导致大气扩散模型计算的准确性受到影响。通常可以采用数据同化来改善模型预测结果。该文提出一种基于Gauss烟团模型的大气扩散数据同化方法,可以结合观测数据改善模型的预测结果。该方法在迭代搜索中对烟团参数进行线性变换以简化Gauss烟团模型,利用粒子群优化算法对泄漏速率、释放高度、风向、平均风速这4个模型参数进行校正。该方法适用于平坦地形和均匀稳定气象条件下的中尺度扩散。采用稳态条件下双生子实验进行验证,观测点位的模拟值与真实观测值的相关系数达到0.99。在非稳态条件下对源项估计结果进行了测试,结果略优于集合Kalman滤波方法,相关系数达到0.68。该同化方法计算速度快,能有效提升模型的预测,可用于大气扩散数据同化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黎岢
梁漫春
苏国锋
关键词 放射性核事故大气扩散数据同化粒子群优化    
Abstract:Models are needed to quickly predict the atmospheric dispersion of radioactive material released in a nuclear accident. However, the uncertainties in the source term, meteorological data, and other conditions reduce the dispersion model prediction reliability. Data assimilation (DA) is usually introduced to improve the model predictions. The paper presents a DA method based on a Gaussian puff model to improve the predictions using some observed data. The method modifies the puff parameters to approximate the observed data in an iterative search. The four model parameters modified using particle swarm optimization in this study are the release rate, release height, wind direction, and mean wind speed. The method is applicable to mesoscale atmospheric dispersion with uniform and stable conditions over a flat area. Twin experiments are used to verify this DA method. The correlation coefficient between the experimental group and the control group at the observation points is 0.99. The source estimation in the non-steady condition is also tested with the correlation coefficient of 0.68, slightly better than the ensemble Kalman filter method. The method converges rapidly with good model predictions; thus, this method is useful for data assimilation of atmospheric dispersion.
Key wordsradioactive nuclear accident    atmospheric dispersion    data assimilation    particle swarm optimization
收稿日期: 2018-05-23      出版日期: 2018-11-21
基金资助:国家重点研发计划(2016YFF0103901)
通讯作者: 梁漫春,副研究员,E-mail:lmc@tsinghua.edu.cn     E-mail: lmc@tsinghua.edu.cn
引用本文:   
黎岢, 梁漫春, 苏国锋. 基于Gauss烟团模型的大气扩散数据同化方法[J]. 清华大学学报(自然科学版), 2018, 58(11): 992-999.
LI Ke, LIANG Manchun, SU Guofeng. Data assimilation method for atmospheric dispersion based on a Gaussian puff model. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 992-999.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.049  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I11/992
  表1 开阔平原田野地区的 Briggs经验公式[4]
  表2 模型参数输入误差设置
  图1 (网络版彩图)两组观测点位设置
  图2 含有30%随机误差的观测结果与真实活度浓度的对比
  图3 泄漏速率的数据同化结果
  图4 释放高度的数据同化结果
  图5 风向的数据同化结果
  图6 平均风速的数据同化结果
  图7 泄漏速率与平均风速的比值
  表3 40组双生子模拟实验的数据同化结果
  图8 释放位置与监测点位布置
  图9 本文提出的同化算法对源项的估计结果
  表4 与 EnKF算法的源项估计结果对比
[1] NASSTROM J S, SUGIYAMA G, BASKETT R L, et al. The national atmospheric release advisory center modelling and decision-support system for radiological and nuclear emergency preparedness and response[J]. International Journal of Emergency Management, 2007, 4(3):524-550.
[2] THYKIER-NIELSEN S, DEME S, MIKKELSEN T. Description of the atmospheric dispersion module RIMPUFF[R]. Roskilde, Denmark:Risø National Laboratory, 1999.
[3] SCIRE J S, STRIMAITIS D G, YAMARTINO R J. A user's guide for the CALPUFF dispersion model[M]. Concord, USA:Earth Tech, 2000.
[4] 王醒宇, 康凌. 核事故后果评价方法及其新发展[M]. 北京:原子能出版社, 2003. WANG X Y, KANG L. The method and new development of nuclear accident consequences assessment[M]. Beijing:Atomic Energy Press, 2003. (in Chinese)
[5] 王跃山. 数据同化:它的缘起、含义和主要方法[J]. 海洋预报, 1999, 16(1):11-20. WANG Y S. Data assimilation:Its cause, its meaning and main procedures[J]. Marine Forecasts, 1999, 16(1):11-20. (in Chinese)
[6] EHRHARDT J. The RODOS system:Decision support for off-site emergency management in Europe[J]. Radiation Protection Dosimetry, 1997, 73(1-4):35-40.
[7] ROJAS-PALMA C, MADSEN H, GERING F, et al. Data assimilation in the decision support system RODOS[J]. Radiation Protection Dosimetry, 2003, 104(1):31-40.
[8] ZHENG D Q, LEUNG J K C, LEE B Y, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11):2438-2446.
[9] ZHENG D Q, LEUNG J K C, LEE B Y. Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using ensemble Kalman filter[J]. Atmospheric Environment, 2009, 43(12):2005-2011.
[10] ZHANG X L, SU G F, YUAN H Y, et al. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion:Prediction improved and source estimated[J]. Journal of Hazardous Materials, 2014, 280:143-155.
[11] ZHANG X L, SU G F, CHEN J G, et al. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents:An application to Kincaid tracer experiment[J]. Journal of Hazardous Materials, 2015, 297:329-339.
[12] QUÉLO D, SPORTISSE B, ISNARD O. Data assimilation for short range atmospheric dispersion of radionuclides:A case study of second-order sensitivity[J]. Journal of Environmental Radioactivity, 2005, 84(3):393-408.
[13] KRYSTA M, BOCQUET M, SPORTISSE B, et al. Data assimilation for short-range dispersion of radionuclides:An application to wind tunnel data[J]. Atmospheric Environment, 2006, 40(38):7267-7279.
[14] 刘蕴, 方晟, 李红, 等. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1):98-104. LIU Y, FANG S, LI H, et al. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1):98-104. (in Chinese)
[15] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A. Assimilation of observations of radiation level into an atmospheric transport model:A case study with the particle filter and the ETEX tracer dataset[J]. Atmospheric Environment, 2011, 45(34):6149-6157.
[16] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A, et al. Using the particle filter for nuclear decision support[J]. Environmental Modelling & Software, 2012, 37:78-89.
[17] BRIGGS G A. Diffusion estimation for small emissions. Preliminary report[R]. Washington, DC, USA:Department of Energy, USA, 1973.
[18] 包子阳, 余继周. 智能优化算法及其MATLAB实例[M]. 北京:电子工业出版社, 2016. BAO Z Y, YU J Z. Intelligent optimization algorithms and the MATLAB examples[M]. Beijing:Electronic Industry Press, 2016. (in Chinese)
[1] 刘华森, 陈恳, 王国磊. 基于粒子群算法的工件三维膨胀变形下转站参数优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 979-985.
[2] 崔俊云, 陈迪, 袁野, 马玉亮, 王国仁. 空间众包中在线路径规划算法[J]. 清华大学学报(自然科学版), 2020, 60(8): 672-682.
[3] 李胜强, 谭铭, 张展博. 含黏性力最速降线问题的最优化解法及其在ADS设计中的应用[J]. 清华大学学报(自然科学版), 2018, 58(6): 563-569.
[4] 刘成颖, 吴昊, 王立平, 张智. 基于PSO优化LS-SVM的刀具磨损状态识别[J]. 清华大学学报(自然科学版), 2017, 57(9): 975-979.
[5] 刘毅,刘龙,李王锋,董业斌,张秀青. 石化园区规划大气环境风险模拟方法与案例[J]. 清华大学学报(自然科学版), 2015, 55(1): 80-86.
[6] 刘蕴,方晟,李红,曲静原,姚仁太,范丹. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1): 98-104.
[7] 胡啸峰,黄弘,申世飞. 基于城市冠层模型的放射性物质大气扩散模拟[J]. 清华大学学报(自然科学版), 2014, 54(6): 711-718.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn