Abstract:Models are needed to quickly predict the atmospheric dispersion of radioactive material released in a nuclear accident. However, the uncertainties in the source term, meteorological data, and other conditions reduce the dispersion model prediction reliability. Data assimilation (DA) is usually introduced to improve the model predictions. The paper presents a DA method based on a Gaussian puff model to improve the predictions using some observed data. The method modifies the puff parameters to approximate the observed data in an iterative search. The four model parameters modified using particle swarm optimization in this study are the release rate, release height, wind direction, and mean wind speed. The method is applicable to mesoscale atmospheric dispersion with uniform and stable conditions over a flat area. Twin experiments are used to verify this DA method. The correlation coefficient between the experimental group and the control group at the observation points is 0.99. The source estimation in the non-steady condition is also tested with the correlation coefficient of 0.68, slightly better than the ensemble Kalman filter method. The method converges rapidly with good model predictions; thus, this method is useful for data assimilation of atmospheric dispersion.
黎岢, 梁漫春, 苏国锋. 基于Gauss烟团模型的大气扩散数据同化方法[J]. 清华大学学报(自然科学版), 2018, 58(11): 992-999.
LI Ke, LIANG Manchun, SU Guofeng. Data assimilation method for atmospheric dispersion based on a Gaussian puff model. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 992-999.
[1] NASSTROM J S, SUGIYAMA G, BASKETT R L, et al. The national atmospheric release advisory center modelling and decision-support system for radiological and nuclear emergency preparedness and response[J]. International Journal of Emergency Management, 2007, 4(3):524-550. [2] THYKIER-NIELSEN S, DEME S, MIKKELSEN T. Description of the atmospheric dispersion module RIMPUFF[R]. Roskilde, Denmark:Risø National Laboratory, 1999. [3] SCIRE J S, STRIMAITIS D G, YAMARTINO R J. A user's guide for the CALPUFF dispersion model[M]. Concord, USA:Earth Tech, 2000. [4] 王醒宇, 康凌. 核事故后果评价方法及其新发展[M]. 北京:原子能出版社, 2003. WANG X Y, KANG L. The method and new development of nuclear accident consequences assessment[M]. Beijing:Atomic Energy Press, 2003. (in Chinese) [5] 王跃山. 数据同化:它的缘起、含义和主要方法[J]. 海洋预报, 1999, 16(1):11-20. WANG Y S. Data assimilation:Its cause, its meaning and main procedures[J]. Marine Forecasts, 1999, 16(1):11-20. (in Chinese) [6] EHRHARDT J. The RODOS system:Decision support for off-site emergency management in Europe[J]. Radiation Protection Dosimetry, 1997, 73(1-4):35-40. [7] ROJAS-PALMA C, MADSEN H, GERING F, et al. Data assimilation in the decision support system RODOS[J]. Radiation Protection Dosimetry, 2003, 104(1):31-40. [8] ZHENG D Q, LEUNG J K C, LEE B Y, et al. Data assimilation in the atmospheric dispersion model for nuclear accident assessments[J]. Atmospheric Environment, 2007, 41(11):2438-2446. [9] ZHENG D Q, LEUNG J K C, LEE B Y. Online update of model state and parameters of a Monte Carlo atmospheric dispersion model by using ensemble Kalman filter[J]. Atmospheric Environment, 2009, 43(12):2005-2011. [10] ZHANG X L, SU G F, YUAN H Y, et al. Modified ensemble Kalman filter for nuclear accident atmospheric dispersion:Prediction improved and source estimated[J]. Journal of Hazardous Materials, 2014, 280:143-155. [11] ZHANG X L, SU G F, CHEN J G, et al. Iterative ensemble Kalman filter for atmospheric dispersion in nuclear accidents:An application to Kincaid tracer experiment[J]. Journal of Hazardous Materials, 2015, 297:329-339. [12] QUÉLO D, SPORTISSE B, ISNARD O. Data assimilation for short range atmospheric dispersion of radionuclides:A case study of second-order sensitivity[J]. Journal of Environmental Radioactivity, 2005, 84(3):393-408. [13] KRYSTA M, BOCQUET M, SPORTISSE B, et al. Data assimilation for short-range dispersion of radionuclides:An application to wind tunnel data[J]. Atmospheric Environment, 2006, 40(38):7267-7279. [14] 刘蕴, 方晟, 李红, 等. 基于四维变分资料同化的核事故源项反演[J]. 清华大学学报(自然科学版), 2015, 55(1):98-104. LIU Y, FANG S, LI H, et al. Source inversion in nuclear accidents based on 4D variational data assimilation[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(1):98-104. (in Chinese) [15] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A. Assimilation of observations of radiation level into an atmospheric transport model:A case study with the particle filter and the ETEX tracer dataset[J]. Atmospheric Environment, 2011, 45(34):6149-6157. [16] HIEMSTRA P H, KARSSENBERG D, VAN DIJK A, et al. Using the particle filter for nuclear decision support[J]. Environmental Modelling & Software, 2012, 37:78-89. [17] BRIGGS G A. Diffusion estimation for small emissions. Preliminary report[R]. Washington, DC, USA:Department of Energy, USA, 1973. [18] 包子阳, 余继周. 智能优化算法及其MATLAB实例[M]. 北京:电子工业出版社, 2016. BAO Z Y, YU J Z. Intelligent optimization algorithms and the MATLAB examples[M]. Beijing:Electronic Industry Press, 2016. (in Chinese)