Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (1): 53-65    DOI: 10.16511/j.cnki.qhdxxb.2018.22.052
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
锂离子电池自放电机理及测量方法
裴普成, 陈嘉瑶, 吴子尧
清华大学 汽车安全与节能国家重点试验室, 北京 100084
Self-discharge mechanism and measurement methods for lithium ion batteries
PEI Pucheng, CHEN Jiayao, WU Ziyao
Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(5165 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在锂离子电池的出厂检测及退役后的梯次利用阶段,为了保证成组电池的一致性,需要对电池的自放电率进行测量。该文系统阐述了锂离子电池各部分结构的自放电机理及影响因素,并总结了目前国内外测量自放电率的两类主要方法:静置测量方法通过对电池进行长时间静置得到自放电率,测量时间过长;动态测量方法通过结合等效电路模型等,可以在动态过程中完成参数辨识,在缩短测量时间方面取得了一定的进展。对动态测量方法的实验设计进行创新优化,将是实现自放电率快速测量的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴普成
陈嘉瑶
吴子尧
关键词 锂离子电池自放电机理测量方法    
Abstract:During pre-delivery inspections of lithium ion batteries and the staggered utilization phase after elimination, the battery self-discharge rate needs to be measured to confirm the uniformity of the lithium ion batteries. This study analyzed the lithium ion battery self-discharge mechanisms, the key factors affecting the self-discharge, and the two main methods for measuring the self-discharge rate. The deposit method for measuring the self-discharge rate stores the batteries for a long time, which is very time consuming. The dynamic method measures the self-discharge rate over a short period based on an equivalent circuit model which significantly shortens the measuring time. The dynamic method needs to be further optimized to realize rapid measurements.
Key wordslithium ion battery    self-discharge    mechanism    measurement methods
收稿日期: 2018-07-30      出版日期: 2019-01-16
基金资助:国家重点研发计划项目(2017YFB0102705,2016YFB0101305);国家自然科学基金项目(21676158)
引用本文:   
裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(1): 53-65.
PEI Pucheng, CHEN Jiayao, WU Ziyao. Self-discharge mechanism and measurement methods for lithium ion batteries. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 53-65.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.052  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I1/53
  图1 (网络版彩图)锂离子电池的自放电机理图
  图2 35 ℃ 下不同SOC的 NCM 电池容量衰减率 [72]
  图3 LCO 电池在不同环境温度下的容量衰减 [19]
  图4 静置时间对电池自放电的影响
  图5 环境湿度对电池自放电的影响 [87]
  图6 容量测量方法示意图
  图7 国内外部分标准规定的测量流程
  图8 Sazhin电流测量方法部分实验结果 [97]
  图9 文[100]所用锂离子电池等效电路
[1] BOULANGER A G, CHU A C, MAXX S, et al. Vehicle electrification:Status and issues[J]. Proceedings of the IEEE, 2011, 99(6):1116-1138.
[2] 施晓清, 李笑诺, 杨建新. 低碳交通电动汽车碳减排潜力及其影响因素分析[J]. 环境科学, 2013(1):385-394. SHI X Q, LI X N, YANG J X. Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors[J]. Environmental Science, 2013(1):385-394. (in Chinese)
[3] KIM T H, PARK J S, CHANG S K, et al. The current move of lithium ion batteries towards the next phase[J]. Advanced Energy Materials, 2012, 2(7):860-872.
[4] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179):652-657.
[5] TOLLEFSON J. Car industry:Charging up the future[J]. Nature News, 2008, 456(7221):436-440.
[6] 戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014(2):181-188, 203. DAI H F, WANG N, WEI X Z, et al. A research review on the cell inconsistency of Li-ion traction batteries in electric vehicles[J]. Automotive Engineering, 2014(2):181-188, 203. (in Chinese)
[7] 王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7):577-580. WANG Z P, SUN F C, LIN C. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7):577-580. (in Chinese)
[8] WANG S, LU L, LIU X. A simulation on safety of LiFePO4/C cell using electrochemical-thermal coupling model[J]. Journal of Power Sources, 2013, 244(4):101-108.
[9] YAZAMI R, REYNIER Y F. Mechanism of self-discharge in graphite-lithium anode[J]. Electrochimica Acta, 2002, 47(8):1217-1223.
[10] GROLLEAU S, DELAILLE A, GUALOUS H, et al. Calendar aging of commercial graphite/LiFePO4 cell:Predicting capacity fade under time dependent storage conditions[J]. Journal of Power Sources, 2014, 255(6):450-458.
[11] RAMADESIGAN V, CHEN K, BURNS N A, et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models[J]. Journal of the Electrochemical Society, 2011, 158(9):A1048-A1054.
[12] ABRAHAM D, KNUTH J, DEES D, et al. Performance degradation of high-power lithium-ion cells:Electrochemistry of harvested electrodes[J]. Journal of Power Sources, 2007, 170(2):465-475.
[13] JOHO F, RYKART B, BLOME A, et al. Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries[J]. Journal of Power Sources, 2001, S97-98(7):78-82.
[14] LIU Y, XIE K, PAN Y, et al. Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries[J]. Solid State Ionics, 2018, 320:126-131.
[15] BALAGOPAL B, HUANG C S, CHOW M-Y. Effect of calendar ageing on SEI growth and its impact on electrical circuit model parameters in lithium ion batteries[C]//2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems. Piscataway, USA:IEEE Press, 2018:32-37.
[16] FLEISCHHAMMER M, WALDMANN T, BISLE G, et al. Interaction of cyclic ageing at high-rate and low temperatures and safety in lithium-ion batteries[J]. Journal of Power Sources, 2015, 274(274):432-439.
[17] BARRÉ A, DEGUILHEM B, GROLLEAU S, et al. A review on lithium-ion battery ageing mechanisms and estimations for automotive applications[J]. Journal of Power Sources, 2013, 241(11):680-689.
[18] SARASKETA-ZABALA E, GANDIAGA I, RODRIGUEZ-MARTINEZ L, et al. Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources, 2015, 275:573-587.
[19] BROUSSELY M, HERREYRE S, BIENSAN P, et al. Aging mechanism in Li ion cells and calendar life predictions[J]. Journal of Power Sources, 2001, 97(4):13-21.
[20] LIU P, WANG J, HICKS-GARNER J, et al. Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses[J]. Journal of the Electrochemical Society, 2010, 157(4):A499-A507.
[21] ZAVALIS T G, KLETT M, KJELL M H, et al. Aging in lithium-ion batteries:Model and experimental investigation of harvested LiFePO4 and mesocarbon microbead graphite electrodes[J]. Electrochimica Acta, 2013, 110(6):335-348.
[22] KEIL P, JOSSEN A. Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and Coulomb tracking[J]. Journal of the Electrochemical Society, 2017, 164(1):A6066-A6074.
[23] VETTER J, NOVÁK P, WAGNER M, et al. Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147(1-2):269-281.
[24] KASSEM M, DELACOURT C. Postmortem analysis of calendar-aged graphite/LiFePO4 cells[J]. Journal of Power Sources, 2013, 235(8):159-171.
[25] 王力臻, 张文静, 刘玉军, 等. NaBF4对锂离子电池石墨负极性能的影响[J]. 无机化学学报, 2013(7):1407-1413. WANG L Z, ZHANG W J, LIU Y J, et al. Influence of NaBF4 on the graphite anode for Li-ion battery[J]. Chinese Journal of Inorganic Chemistry, 2013(7):1407-1413. (in Chinese)
[26] ILTCHEV N, CHEN Y, OKADA S, et al. LiFePO4 storage at room and elevated temperatures[J]. Journal of Power Sources, 2003, S119-121(6):749-754.
[27] JIN H-F, LIU Z, TENG Y-M, et al. A comparison study of capacity degradation mechanism of LiFePO4-based lithium ion cells[J]. Journal of Power Sources, 2009, 189(1):445-448.
[28] DENIS Y, DONOUE K, KADOHATA T, et al. Impurities in LiFePO4 and their influence on material characteristics[J]. Journal of the Electrochemical Society, 2008, 155(7):A526-A530.
[29] SVENS P, ERIKSSON R, HANSSON J, et al. Analysis of aging of commercial composite metal oxide-Li4Ti5O12 battery cells[J]. Journal of Power Sources, 2014, 270(270):131-141.
[30] SARRE G, BLANCHARD P, BROUSSELY M. Aging of lithium-ion batteries[J]. Journal of Power Sources, 2004, 127(1-2):65-71.
[31] WANG H, JANG Y I, HUANG B, et al. TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1999, 146(2):473-480.
[32] LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15):4440-4457.
[33] SEONG W M, PARK K Y, LEE M H, et al. Abnormal self-discharge in lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(4):970-978.
[34] HE W, QIAN J, CAO Y, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Advances, 2012, 2(8):3423-3429.
[35] WU F, LI N, SU Y, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. Journal of Materials Chemistry, 2012, 22(4):1489-1497.
[36] SUN Y K, LEE M J, YOON C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9):1192-1196.
[37] ROSINA K J, JIANG M, ZENG D, et al. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(38):20602-20610.
[38] CONG L N, GAO X G, MA S C, et al. Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12[J]. Electrochimica Acta, 2014, 115:399-406.
[39] LIU J, MANTHIRAM A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010, 20(19):3961-3967.
[40] MARKOVSKY B, RODKIN A, COHEN Y, et al. The study of capacity fading processes of Li-ion batteries:Major factors that play a role[J]. Journal of Power Sources, 2003, S119-121(6):504-510.
[41] MAO Z, FARKHONDEH M, PRITZKER M, et al. Calendar aging and gas generation in commercial graphite/NMC-LMO lithium-ion pouch cell[J]. Journal of the Electrochemical Society, 2017, 164(14):A3469-A3483.
[42] BROUSSELY M, BIENSAN P, BONHOMME F, et al. Main aging mechanisms in Li ion batteries[J]. Journal of Power Sources, 2005, 146(1-2):90-96.
[43] WOHLFAHRT-MEHRENS M, VOGLER C, GARCHE J. Aging mechanisms of lithium cathode materials[J]. Journal of Power Sources, 2004, 127(1-2):58-64.
[44] DU PASQUIER A, BLYR A, CRESSENT A, et al. An update on the high temperature ageing mechanism in LiMn2O4-based Li-ion cells[J]. Journal of Power Sources, 1999, S81-82(9):54-59.
[45] STIASZNY B, ZIEGLER J C, KRAUSS E E, et al. Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part Ⅱ:Calendar aging[J]. Journal of Power Sources, 2014, 258(21):61-75.
[46] JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells[J]. Journal of the Electrochemical Society, 1996, 143(7):2204-2211.
[47] ROBERTSON A, LU S, HOWARD W. M3+-modified LiMn2O4 spinel intercalation cathodes. 2:Electrochemical stabilization by Cr3+[J]. Journal of the Electrochemical Society, 1997, 144(10):3505-3512.
[48] ENDRES P, OTT A, KEMMLER-SACK S, et al. Extraction of lithium from spinel phases of the system Li1+xMn2-xO4-δ[J]. Journal of Power Sources, 1997, 69(1-2):145-156.
[49] AOSHIMA T, OKAHARA K, KIYOHARA C, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature[J]. Journal of Power Sources, 2001, S97-98(7):377-380.
[50] LI J H, XING L D, ZHANG L P, et al. Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive[J]. Journal of Power Sources, 2016, 324:17-25.
[51] LI J, XING L, ZHANG R, et al. Tris(trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte[J]. Journal of Power Sources, 2015, 285:360-366.
[52] MANZI J, VITUCCI F, PAOLONE A, et al. Analysis of the self-discharge process in LiCoPO4 electrodes:Bulks[J]. Electrochimica Acta, 2015, 179:604-610.
[53] RATNAKUMAR B V, SMART M C, SURAMPUDI S. Effects of SEI on the kinetics of lithium intercalation[J]. Journal of Power Sources, 2001, S97-98(7):137-139.
[54] BESENHARD J O, WAGNER M W, WINTER M, et al. Inorganic film-forming electrolyte additives improving the cycling behavior of metallic lithium electrodes and the self-discharge of carbon lithium electrodes[J]. Journal of Power Sources, 1993, 44(1-3):413-420.
[55] AURBACH D, EIN-ELI Y, MARKOVSKY B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries Ⅱ. Graphite electrodes[J]. Journal of the Electrochemical Society, 1995, 142(9):2882-2890.
[56] EINELI Y, THOMAS S R, KOCH V R. The role of SO2 as an additive to organic Li-ion battery electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(4):1159-1165.
[57] KOMABA S, ITABASHI T, KAPLAN B, et al. Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive[J]. Electrochemistry Communications, 2003, 5(11):962-966.
[58] VINCENT C A. Lithium batteries:A 50-year perspective, 1959-2009[J]. Solid State Ionics, 2000, 134(1-2):159-167.
[59] ZHU Y, CASSELMAN M D, LI Y, et al. Perfluoroalkyl-substituted ethylene carbonates:Novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 246:184-191.
[60] ZHU Y, LI Y, BETTGE M, et al. Positive electrode passivation by LiDFOB electrolyte additive in high-capacity lithium-ion cells[J]. Journal of the Electrochemical Society, 2012, 159(12):A2109-A2117.
[61] FLEURY X, GENIÈS S, THIVEL P-X. Degradation of separator after calendar ageing in 18650 Li-ion battery:Impact on safety and performances[C]//The Electrochemical Society Meeting Abstracts. Seattle, USA, 2018:118.
[62] MATADI B P, GENIÈS S, DELAILLE A, et al. Effects of biphenyl polymerization on lithium deposition in commercial graphite/NMC lithium-ion pouch-cells during calendar aging at high temperature[J]. Journal of the Electrochemical Society, 2017, 164(6):A1089-A1097.
[63] NAKAJIMA T, MORI M, GUPTA V, et al. Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries[J]. Solid State Sciences, 2002, 4(11-12):1385-1394.
[64] 邓龙征, 吴锋, 高旭光, 等. 涂碳铝箔对磷酸铁锂电池性能影响研究[J]. 无机化学学报, 2014(4):770-778. DENG L Z, WU F, GAO X G, et al. Effects of coating carbon aluminum foil on the battery performance[J]. Chinese Journal of Inorganic Chemistry, 2014(4):770-778. (in Chinese)
[65] 钟盛文, 胡经纬, 吴子平, 等. 正极集流体为碳纳米管宏观膜的锂离子电池及其性能[J]. 新型炭材料, 2014(4):322-328. ZHONG S W, HU J W, WU Z P, et al. Performance of lithium ion batteries using a carbon nanotube film as a cathode current collector[J]. New Carbon Materials, 2014(4):322-328. (in Chinese)
[66] OMAR N, FIROUZ Y, TIMMERMANS J, et al. Lithium iron phosphate-assessment of calendar life and change of battery parameters[C]//2014 IEEE Vehicle Power and Propulsion Conference. Piscataway, USA:IEEE Press, 2014:1-5.
[67] EL MEJDOUBI A, GUALOUS H, CHAOUI H, et al. Experimental investigation of calendar aging of lithium-ion batteries for vehicular applications[C]//2017 IV International Electromagnetic Compatibility Conference. Piscataway, USA:IEEE Press, 2017:1-5.
[68] ECKER M, NIETO N, KÄBITZ S, et al. Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries[J]. Journal of Power Sources, 2014, 248:839-851.
[69] UTSUNOMIYA T, HATOZAKI O, YOSHIMOTO N, et al. Self-discharge behavior and its temperature dependence of carbon electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(20):8598-8603.
[70] PETIT M, PRADA E, SAUVANT-MOYNOT V. Development of an empirical aging model for Li-ion batteries and application to assess the impact of vehicle-to-grid strategies on battery lifetime[J]. Applied Energy, 2016, 172:398-407.
[71] SCHMALSTIEG J, KÄBITZ S, ECKER M, et al. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries[J]. Journal of Power Sources, 2014, 257:325-334.
[72] DE HOOG J, TIMMERMANS J-M, IOAN-STROE D, et al. Combined cycling and calendar capacity fade modeling of a nickel-manganese-cobalt oxide cell with real-life profile validation[J]. Applied Energy, 2017, 200:47-61.
[73] 刘宇, 王保峰, 解晶莹, 等. 二次锂电池中SEI膜的电化学性能表征[J]. 无机材料学报, 2003(2):307-312. LIU Y, WANG B F, XIE J Y, et al. Electrochemical characteristic of SEI in secondary lithium batteries[J]. Journal of Inorganic Materials, 2003(2):307-312. (in Chinese)
[74] KEIL P, SCHUSTER S F, WILHELM J, et al. Calendar aging of lithium-ion batteries I. Impact of the graphite anode on capacity fade[J]. Journal of the Electrochemical Society, 2016, 163(9):A1872-A1880.
[75] SWIERCZYNSKI M, STROE D-I, STAN A-I, et al. Investigation on the self-discharge of the LiFePO4/C nanophosphate battery chemistry at different conditions[C]//2014 IEEE Transportation Electrification Conference and Expo, Asia-Pacific. Piscataway, USA:IEEE Press, 2014:1-6.
[76] REDONDO-IGLESIAS E, VENET P, PELISSIER S. Eyring acceleration model for predicting calendar ageing of lithium-ion batteries[J]. Journal of Energy Storage, 2017, 131:76-183.
[77] WANG J, PUREWAL J, LIU P, et al. Degradation of lithium ion batteries employing graphite negatives and nickel-cobalt-manganese oxide + spinel manganese oxide positives. Part 1:Aging mechanisms and life estimation[J]. Journal of Power Sources, 2014, 269:937-948.
[78] KÄBITZ S, GERSCHLER J B, ECKER M, et al. Cycle and calendar life study of a graphite|LiNi1/3Mn1/3Co1/3O2 Li-ion high energy system. Part A:Full cell characterization[J]. Journal of Power Sources, 2013, 239:572-583.
[79] ECKER M, GERSCHLER J B, VOGEL J, et al. Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data[J]. Journal of Power Sources, 2012, 215:248-257.
[80] BAGHDADI I, BRIAT O, DELÉTAGE J-Y, et al. Lithium battery aging model based on Dakin's degradation approach[J]. Journal of Power Sources, 2016, 325:273-285.
[81] JUNGST R G, NAGASUBRAMANIAN G, CASE H L, et al. Accelerated calendar and pulse life analysis of lithium-ion cells[J]. Journal of Power Sources, 2003, 119:870-873.
[82] ZHENG T, GOZDZ A S, AMATUCCI G G. Reactivity of the solid electrolyte interface on carbon electrodes at elevated temperatures[J]. Journal of the Electrochemical Society, 1999, 146(11):4014-4018.
[83] BLOOM I, COLE B W, SOHN J J, et al. An accelerated calendar and cycle life study of Li-ion cells[J]. Journal of Power Sources, 2001, 101(2):238-247.
[84] ZHENG Y, OUYANG M, LU L, et al. Understanding aging mechanisms in lithium-ion battery packs:From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278:287-295.
[85] YAMANE H, INOUE T, FUJITA M, et al. A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80℃, and the suppressing substances of its fading[J]. Journal of Power Sources, 2001, 99(1-2):60-65.
[86] BELT J, UTGIKAR V, BLOOM I. Calendar and PHEV cycle life aging of high-energy, lithium-ion cells containing blended spinel and layered-oxide cathodes[J]. Journal of Power Sources, 2011, 196(23):10213-10221.
[87] BYUN S, PARK J, APPIAH W A, et al. The effects of humidity on the self-discharge properties of Li(Ni1/3Co1/3Mn1/3)O2/graphite and LiCoO2/graphite lithium-ion batteries during storage[J]. RSC Advances, 2017, 7(18):10915-10921.
[88] International Electrotechnical Commission (IEC). Secondary cells and batteries containing alkaline or other non-acid electrolytes:Secondary lithium cells and batteries for portable applications:IEC 61960-2011[S]. Geneva, Switzerland:IEC, 2011.
[89] United States Council for Automotive Research. Battery test manual for electric vehicles[R/OL]. (2015-06)[2018-07-17]. http://www.uscar.org/guest/article_view.php?articles_id=86.
[90] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池电性能要求及试验方法:GB/T 31486-2015[S]. 北京:中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Electrical performance requirements and test methods for traction battery of electric vehicle:GB/T 31486-2015[S]. Beijing:Standards Press of China, 2015. (in Chinese)
[91] MATSUYAMA Y, SUMI T, KOBAYASHI K, et al. Method for inspecting secondary battery e.g. lithium ion secondary battery, involves performing quality determination of secondary battery based on comparison result of voltage drop amount in aging process, and threshold value:JP2015072148-A[P]. 2015-04-16.
[92] 钱龙, 李晶, 王波, 等. 一种检测磷酸铁锂电池自放电方法:CN106918785A[P]. 2017-07-04. QIAN L, LI J, WANG B, et al. A method for measuring self-discharge of LiFeO4 lithium ion battery:CN106918785A[P]. 2017-07-04. (in Chinese)
[93] 贺狄龙, 刘爱菊, 马冬梅, 等. 一种评价磷酸铁锂电池自放电一致性的方法:CN102508165A[P]. 2012-06-20. HE D L, LIU A J, MA D M, et al. A method for evaluating the self-discharge uniformity of LiFeO4 lithium ion battery:CN102508165A[P]. 2012-06-20. (in Chinese)
[94] 刘双全. 锂电池自放电检测技术的研究与应用[D]. 哈尔滨:哈尔滨理工大学, 2014. LIU S Q. Research and application of self-discharge detection for Li-ion battery[D]. Harbin:Harbin University of Science and Technology, 2014. (in Chinese)
[95] 徐雄文, 武红波, 倪漫利. 一种电池自放电检测方法及装置:CN106054086A[P]. 2016-10-26. XU X W, WU H B, NI M L. A battery self-discharge measuring method and device:CN106054086A[P]. 2016-10-26. (in Chinese)
[96] ZIMMERMAN A H. Self-discharge losses in lithium-ion cells[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(2):19-24.
[97] SAZHIN S V, DUFEK E J, GERING K L. Enhancing Li-ion battery safety by early detection of nascent internal shorts[J]. Journal of the Electrochemical Society, 2016, 164(1):A6281-A6287.
[98] 李革臣, 赵旭, 杨琳, 等. 动力电池自放电测量新技术原理与应用[J]. 新材料产业, 2012(9):75-78. LI G C, ZHAO X, YANG L, et al. A new technology for measuring battery self-discharge:Mechanism and application[J]. Advanced Materials Industry, 2012(9):75-78. (in Chinese)
[99] 李然. 锂动力电池健康度评价与估算方法的研究[D]. 哈尔滨:哈尔滨理工大学, 2016. LI R. Research on evaluation and estimation methods for state of health of power lithium ion battery[D]. Harbin:Harbin University of Science and Technology, 2016. (in Chinese)
[100] SCHMIDT J P, WEBER A, IVERS-TIFFÉE E. A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique[J]. Journal of Power Sources, 2015, 274:1231-1238.
[101] OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294:272-283.
[1] 黄秀玲, 郑晔, 赖卫国, 朱俊俊, 华子恺. 人工韧带体外摩擦磨损测量方法[J]. 清华大学学报(自然科学版), 2024, 64(3): 432-441.
[2] 赵炬颖, 徐乙人, 祝天一, 祁志浩, 李永健. 自适应迷宫密封仿真及实验研究[J]. 清华大学学报(自然科学版), 2022, 62(3): 463-469.
[3] 王玉杰, 孙平, 李文新, 张强. 西域砾岩边坡破坏机制及稳定分析方法[J]. 清华大学学报(自然科学版), 2021, 61(8): 863-872.
[4] 郭飞, 程甘霖, 张兆想, 黄兴, 贾晓红. 聚合物软材料磨损硬质材料机理研究进展[J]. 清华大学学报(自然科学版), 2021, 61(6): 643-652.
[5] 姜齐荣, 赵崇滨. 并网逆变器的电磁暂态同步稳定问题[J]. 清华大学学报(自然科学版), 2021, 61(5): 415-428.
[6] 李玉龙, 何永勇, 雒建斌. 航空柱塞泵关键摩擦副表面改性与性能增强[J]. 清华大学学报(自然科学版), 2021, 61(12): 1405-1422.
[7] 方儒卿, 张娜, 李哲. 3类锂离子电池多孔电极模型比较研究及电池正向设计应用[J]. 清华大学学报(自然科学版), 2021, 61(10): 1055-1065.
[8] 苗苗, 张缦, 吕俊复, 杨海瑞, 张凯. 流化床燃烧中N2O生成机理与减排技术[J]. 清华大学学报(自然科学版), 2020, 60(6): 507-517.
[9] 陈东方, 裴普成, 宋鑫, 任棚. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2): 139-146.
[10] 陈东方, 裴普成, 宋鑫. 锌空燃料电池老化实验研究与机理分析[J]. 清华大学学报(自然科学版), 2020, 60(11): 895-901.
[11] 吕峥, 宋佳丽, 孙峙, 曹宏斌. 中国锂离子电池回收技术知识产权分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 551-557.
[12] 贾楠, 刘呈, 钱静. 基于安全系统相似机理模型的事故分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 1006-1012.
[13] 关添, 杨木群, 魏子昆, 姜宇程, 王健. 光刺激耳蜗听神经的机理仿真[J]. 清华大学学报(自然科学版), 2017, 57(10): 1102-1105.
[14] 何志超, 杨耕, 卢兰光, 吴海桑. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 532-537.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn