Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (2): 192-197    DOI: 10.16511/j.cnki.qhdxxb.2018.25.001
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
井点降水法处理可液化地基的振动台试验
陈宇龙1, 张科2
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 昆明理工大学 电力工程学院, 昆明 650500
Shaking table tests on the mitigation of liquefiable ground effects by well-point dewatering
CHEN Yulong1, ZHANG Ke2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(4334 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 减饱和法是近年来提出的一种可液化地基处理方法,其基本原理是通过工程措施减小饱和砂土地基中的饱和度,将饱和砂土地基变成不饱和砂土地基,从而提高地基的抗液化强度,减轻地震时产生的液化震害。该文利用井点降水法,在砂土地基中布置排水管,考虑排水管的竖向布置、水平布置、倾斜布置以及联合布置,对井点降水法的抗液化效果进行了振动台模型试验。实验结果表明:排水管水平布置产生的超孔隙水压最小,抗液化效果最好;竖直布置次之;倾斜布置抗液化效果最不明显。在实际应用过程中,可以定期进行地基土体的排水作业,从而提高可液化地基的抗液化能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇龙
张科
关键词 井点降水法排水抗液化饱和砂土地基振动台试验    
Abstract:The liquefaction resistance of saturated, sandy foundations can be improved by reducing the saturation. The well-point dewatering method was used to lower the saturation of the subsoil using vertical, horizontal, inclined and combined drainage pipes arrangements. The horizontal arrangement gave the best liquefaction resistance with the lowest induced excess pore pressure during the shaking. In engineering practice, the dewatering method can be used at regular intervals to reduce the liquefaction possibility.
Key wordswell-point dewatering method    drainage    liquefaction resistance    saturated sandy foundation    shaking table test
收稿日期: 2017-07-13      出版日期: 2018-01-31
ZTFLH:  TU433  
通讯作者: 张科,副教授,E-mail:zhangke_csu@163.com     E-mail: zhangke_csu@163.com
引用本文:   
陈宇龙, 张科. 井点降水法处理可液化地基的振动台试验[J]. 清华大学学报(自然科学版), 2018, 58(2): 192-197.
CHEN Yulong, ZHANG Ke. Shaking table tests on the mitigation of liquefiable ground effects by well-point dewatering. Journal of Tsinghua University(Science and Technology), 2018, 58(2): 192-197.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.001  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I2/192
  图1 7号硅砂颗粒级配曲线
  图2 试验装置简图 (单位: mm)
  表1 排水管布置形式
  图3 输入地震波的加速度G时程曲线
  图4 (网络版彩图)无排水(S G 1)条件下的最大超孔隙水压比云图与液化地基导致的横向膨胀
  图5 (网络版彩图)排水条件下的最大超孔隙水压比云图
  图6 建筑物模型的沉降
  图7 建筑物模型的沉降
  图8 超孔隙水压与沉降速率
  图9 振动输入刚结束时与试验结束时的沉降
  表2 (网络版彩图)超孔隙水压演化过程
[1] 陈宇龙, 张宇宁. 非塑性细粒对饱和砂土液化特性影响的试验研究[J]. 岩土力学, 2016, 37(2):507-516. CHEN Y L, ZHANG Y N. Experimental study of effects of non-plastic fines on liquefaction properties of saturated sand[J]. Rock and Soil Mechanics, 2016, 37(2):507-516.(in Chinese)
[2] MARASINI N P, OKAMURA M. Numerical simulation of centrifuge tests to evaluate the performance of desaturation by air injection on liquefiable foundation soil of light structures[J]. Soils and Foundations, 2015, 55(6):1388-1399.
[3] OKAMURA M, SOGA Y. Effects of pore fluid compressibility on liquefaction resistance of partially saturated sand[J]. Soils and Foundations, 2006, 46(5):695-700.
[4] UNNO T, KAZAMA M, UZUOKA R, et al. Liquefaction of unsaturated sand considering the pore air pressure and volume compressibility of the soil particle skeleton[J]. Soils and Foundations, 2008, 48(1):87-99.
[5] YOSHIMI Y, TANAKA K, TOKIMATSU K. Liquefaction resistance of partially saturated sand[J]. Soils and Foundations, 1989, 29(3):157-162.
[6] XIA H, HU T. Effects of saturation and back pressure on sand liquefaction[J]. Journal of Geotechnical Engineering, 1991, 117(9):1347-1362.
[7] OKAMURA M, TAKEBAYASHI M, NISHIDA K, et al. In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(7):643-652.
[8] ESELLER-BAYAT E, YEGIAN M K, ALSHAWABKEH A, et al. Liquefaction response of partially saturated sands. I:Experimental results[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(6):863-871.
[9] HE J, CHU J, IVANOV V. Mitigation of liquefaction of saturated sand using biogas[J]. Geotechnique, 2013, 63(4):267-275.
[10] YEGIAN M K, ESELLER-BAYAT E, ALSHAWABKEH A, et al. Induced-partial saturation for liquefaction mitigation:Experimental investigation[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(4):372-380.
[11] KURIKI A, TAMURA S, ZHOU Y, et al. Centrifuge model test of liquefaction countermeasure for existing houses[C]//Proceedings of the 47th Conference of Japanese Geotechnical Society. Hachinohe, Japan:The Japanese Geotechnical Society, 2012:1497-1498.
[12] YAN X, YUAN J, YU H, et al. Multi-point shaking table test design for long tunnels under non-uniform seismic loading[J]. Tunnelling and Underground Space Technology, 2016, 59(10):114-126.
[13] XU H, LI T, XIA L, et al. Shaking table tests on seismic measures of a model mountain tunnel[J]. Tunnelling and Underground Space Technology, 2016, 60(11):197-209.
[14] MOGHADAM M R, BAZIAR M H. Seismic ground motion amplification pattern induced by a subway tunnel:Shaking table testing and numerical simulation[J]. Soil Dynamics and Earthquake Engineering, 2016, 83(4):81-97.
[15] HAMAYOON K, MORIKAWA Y, OKA R, et al. 3D dynamic finite element analyses and 1g shaking table tests on seismic performance of existing group-pile foundation in partially improved grounds under dry condition[J]. Soil Dynamics and Earthquake Engineering, 2016, 90(11):196-210.
[16] LIU J, LIU F, KONG X, et al. Large-scale shaking table model tests on seismically induced failure of concrete-faced rockfill dams[J]. Soil Dynamics and Earthquake Engineering, 2016, 82(3):11-23.
[17] BAO X, MORIKAWA Y, KONDO Y, et al. Shaking table test on reinforcement effect of partial ground improvement for group-pile foundation and its numerical simulation[J]. Soils and Foundations, 2012, 52(6):1043-1061.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn