Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (5): 482-488    DOI: 10.16511/j.cnki.qhdxxb.2018.25.021
  精密仪器 本期目录 | 过刊浏览 | 高级检索 |
多模式分布式遥感微纳航天器集群自然编队构型
方元坤, 孟子阳, 尤政
清华大学 精密仪器系, 精密测试技术及仪器国家重点实验室, 北京 100084
Natural formation of a nano/micro spacecraft cluster for multi-model distributed remote sensing
FANG Yuankun, MENG Ziyang, YOU Zheng
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
全文: PDF(1421 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 分布式遥感技术是目前空间探测技术发展的重要方向,其核心是研究由多个微纳航天器组成的分布式遥感集群的系统特性,并根据不同的应用模式进行编队的维持与重构。由于微纳航天器所携带的燃料有限,如何在自然编队的条件下保持系统在较长时间内的构形稳定是基于分布式微纳航天器的遥感技术亟待解决的重要问题。该文针对多模式分布式遥感任务想定和燃料最省、求解高效等目标,研究了异构集群自然编队构型设计。提出了一种参数直接求解的方法,可以在平面内绕飞模式、领航模式等典型模式下直接获取编队中各伴飞航天器的轨道参数。STK仿真结果表明:该方法精度较高,编队构型稳定,可以满足应急遥感任务要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方元坤
孟子阳
尤政
关键词 分布式遥感微纳航天器编队自然编队    
Abstract:Distributed remote sensing has attracted much attention for space exploration. The sensing ability is based on the system properties of the spacecraft cluster composed by multiple nano/micro spacecraft. In addition, the multiple nano/micro spacecraft formation can be rearranged for different applications. However, since the micro/nano spacecraft have little fuel, methods are urgently needed to maintain the stability of the distributed remote sensing nano/micro spacecraft formation for a relatively long period in a natural formation.The natural nano/micro spacecraft cluster formation is analyzed have for a multiple distributed remote sensing task scenario that optimizes the fuel usage and calculational efficiency. A direct parameter method was designed for the typical tasks of in-plane flying with a tree communication topology and leader-following topology modes. The orbit parameters of the followers are obtained directly by this method. STK simulations show this approach is accurate, robust, and useful for emergency remote sensing tasks.
Key wordsdistributed remote sensing    formation of nano/micro spacecraft    natural formation
收稿日期: 2017-08-28      出版日期: 2018-05-15
ZTFLH:  P237  
基金资助:国家自然科学基金资助项目(61503249);国家重点研发计划(2016YFB0500902);北京市自然科学基金资助项目(4173075)
通讯作者: 孟子阳,副教授,E-mail:ziyangmeng@tsinghua.edu.cn     E-mail: ziyangmeng@tsinghua.edu.cn
作者简介: 方元坤(1979-),男,博士研究生。
引用本文:   
方元坤, 孟子阳, 尤政. 多模式分布式遥感微纳航天器集群自然编队构型[J]. 清华大学学报(自然科学版), 2018, 58(5): 482-488.
FANG Yuankun, MENG Ziyang, YOU Zheng. Natural formation of a nano/micro spacecraft cluster for multi-model distributed remote sensing. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 482-488.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.021  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I5/482
  图1 坐标系定义图
  图2 分布式遥感编队单层树图通信拓扑结构图
  图3 平面内绕飞模式编队构型示意图
  表1 树图通信拓扑下的平面内绕飞工作模式编队各卫星的轨道参数
  图4 参考航天器与伴飞航天器在144h内的位置关系
  表2 参考航天器与伴飞航天器间最大和最小距离数据统计
  图5 伴飞航天器在参考航天器坐标系y轴投影相位关系
  图6 领航模式编队构型示意图
  表3 “领航”模式下编队各卫星的轨道参数
  图7 STK 仿真领航模x方向构型随时间变化关系图
[1] 周美江, 吴会英, 齐金玲.微纳卫星共面伴飞相对运动椭圆短半轴最省燃料控制[J]. 中国空间科学技术, 2015, 5(4):22-31.ZHOU M J, WU H Y, QI J L. Minimum fuel control of the elliptic short axis of the relative motion in micro/nano satellite coplanar flying[J]. Chinese Space Science and Technology, 2015, 5(4):22-31. (in Chinese)
[2] 张育林, 曾国强, 王兆魁, 等. 分布式卫星系统理论及应用[M]. 北京:科学出版社, 2008.ZHANG Y L, ZENG G Q, WANG Z K. Theory and application of distributed satellite system[M]. Beijing:Science Press, 2008. (in Chinese)
[3] SABOL C, BUMS R, MCLAUGHLIN C A. Satellite formation flying design and evolution[J]. Journal of Spacecraft and Rocket, 2001, 38(2):270-278.
[4] CARTER T E. New form for the optimal rendezvous equations near a Keplerian orbit[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1):183-186.
[5] SCHWEIGHART S A, SEDWICK R J. High fidelity linearized J2 model for satellite formation flight[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6):1073-1080.
[6] VADALI S R, ALFRIEND K T, VADDI S. Hill's equations, mean orbital elements, and formation flying of satellites[C]//The Richard H. Battin Astrodynamics Symposium. College Station, TX, USA:AAS, 2000:187-203.
[7] AFFRIEND K T, SCHANB H, GIM D W. Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies[C]//AAS Guidance and Control Conference. San Diego, CA, USA:AAS, 2000:1-12.
[8] SCHAUB H, ALFRIEND K T. J2 invariant relative orbits for spacecraft formations[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2):77-95.
[9] 孟云鹤. 航天器编队飞行导论[M]. 北京:国防工业出版社, 2014.MENG Y H. Introduction to spacecraft formation flying[M]. Beijing:National Defend Industry Press, 2014. (in Chinese)
[10] 吴宝林, 曹喜滨, 任子武. 一种长期稳定的卫星编队队形优化设计方法[J]. 航空学报, 2007, 28(1):167-172.WU B L, CAO X B, REN Z W. A long-time stable formation optimal design method for satellite formation[J]. Acta Aeronautica Astronautica Sinica, 2007, 28(1):167-172. (in Chinese)
[11] 刘林.航天器轨道理论[M]. 北京:国防工业出版社, 2000.LIU L. Orbit theory of spacecraft[M]. Beijing:National Defend Industry Press, 2000. (in Chinese)
[12] 孟鑫, 李俊峰, 高云峰. 编队飞行卫星相对运动的零J2摄动条件[J]. 清华大学学报(自然科学版), 2004, 44(2):219-223. MENG X, LI J F, GAO Y F. J2 invariant perturbation conditions for the relative movement for satellites in formation flying[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(2):219-223. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn