Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (6): 581-586    DOI: 10.16511/j.cnki.qhdxxb.2018.25.024
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
基于局部压缩感知的行为识别
王文峰1, 陈曦1, 王海洋2, 彭伟3, 钱静4, 郑宏伟1
1. 中国科学院 新疆生态与地理研究所, 荒漠与绿洲生态国家重点实验室, 乌鲁木齐 830011;
2. 中国科学院 计算技术研究所, 北京 100190;
3. 厦门大学 信息工程学院, 厦门 361005;
4. 中国科学院 深圳先进技术研究院, 深圳 518055
Video behavior recognition based on locally compressive sensing
WANG Wenfeng1, CHEN Xi1, WANG Haiyang2, PENG Wei3, QIAN Jing4, ZHENG Hongwei1
1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
3. School of Information Science and Engineering, Xiamen University, Xiamen 361005, China;
4. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
全文: PDF(21858 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 压缩感知在目标跟踪领域已取得成功应用,但其在行为识别领域的研究尚不成熟.该文提出了局部压缩感知的思想,结合压缩跟踪与质心定位,实现了视频目标行为的有效识别。局部压缩感知是选定行为敏感区域进行压缩跟踪,基于区域质心轨迹和速度的计算与分类,对目标行为进行认知计算。实验结果表明:借助局部压缩感知,能实现一些特殊的全局目标行为(如奔跑、跌倒等)和局部目标行为(如微笑、眨眼等)的识别,并保证了识别率及识别精度。因此,该文提出的局部压缩感知方法在视频监控目标行为识别领域的应用具有一定的探索意义与研究价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文峰
陈曦
王海洋
彭伟
钱静
郑宏伟
关键词 压缩感知质心定位目标跟踪    
Abstract:Compressive sensing has been successfully applied in the field of target tracking but not for behavior recognition. This paper presents a locally compressive sensing algorithm for behavior analysis which combines compressive tracking and centroid localization for recognition of video object behavior. Local compressive sensing selects a behavior-sensitive area for compressive tracking which characterizes target behavior based on classification of the object trajectory and local centroid velocity. Tests show that locally compressive sensing can accurately recognize global behavior such as running and falling and local behavior such as smiles and blinking. Therefore, the locally compressive sensing method is of great value that can be used for video surveillance and behavior recognition.
Key wordscompressive sensing    centroid localization    target tracking
收稿日期: 2017-12-26      出版日期: 2018-06-15
基金资助:深圳市基础研究资助项目(JCYJ20150630114942260);中国科学院西部之光资助项目(XBBS-2014-16)
通讯作者: 陈曦,研究员,E-mail:chenxi@ms.xjb.ac.cn     E-mail: chenxi@ms.xjb.ac.cn
引用本文:   
王文峰, 陈曦, 王海洋, 彭伟, 钱静, 郑宏伟. 基于局部压缩感知的行为识别[J]. 清华大学学报(自然科学版), 2018, 58(6): 581-586.
WANG Wenfeng, CHEN Xi, WANG Haiyang, PENG Wei, QIAN Jing, ZHENG Hongwei. Video behavior recognition based on locally compressive sensing. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 581-586.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.024  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I6/581
  图1 局部压缩感知思想识别视频目标行为的实验框架
  图2 质心方向、 运动速度和地面距离参数的提取结果(平滑处理后)
  图3 全局行为(如奔跑、 跌倒、 跳跃等)的识别效果
  图4 局部目标行为相关质心参数提取结果
  图5 局部行为(眨眼、 微笑、 点头、 摇头等)的识别结果
[1] KUMAR M, BHATNAGAR C. Crowd behavior recognition using hybrid tracking model and genetic algorithm enabled neural network[J]. International Journal of Computational Intelligence Systems, 2017, 10(1):234-246.
[2] DEVANNE M, BERRETTI S, PALA P, et al. Motion segment decomposition of RGB-D sequences for human behavior understanding[J]. Pattern Recognition, 2017, 61:222-233.
[3] WANG Y, CHEN H, LI S, et al. Object tracking by color distribution fields with adaptive hierarchical structure[J]. Visual Computer, 2017, 33(2):1-13.
[4] CHEN Y, SHEN C. Performance analysis of smartphone-sensor behavior for human activity recognition[J]. IEEE Access, 2017, 5(3):3095-3110.
[5] BATCHULUUN G, KIM J H, HONG H G, et al. Fuzzy system based human behavior recognition by combining behavior prediction and recognition[J]. Expert Systems with Applications, 2017, 81(9):108-133.
[6] VAN V K, WASHINGTON G. Development of a wearable controller for gesture-recognition-based applications using polyvinylidene fluoride[J]. IEEE Transactions on Biomedical Circuits & Systems, 2017, 11(4):900-909.
[7] ARABLOUEI R. Fast reconstruction algorithm for perturbed compressive sensing based on total least-squares and proximal splitting[J]. Signal Processing, 2017, 130(1):57-63.
[8] DING X, CHEN W, WASSELL I J. Compressive sensing reconstruction for video:An adaptive approach based on motion estimation[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(7):1406-1420.
[9] LAUE H E A. Demystifying compressive sensing[J]. IEEE Signal Processing Magazine, 2017, 34(4):171-176.
[10] LIU T, QIU T, DAI R, et al. Nonlinear regression A*OMP for compressive sensing signal reconstruction[J]. Digital Signal Processing, 2017, 69:11-21.
[11] JIANG H, DENG W, SHEN Z. Surveillance video processing using compressive sensing[J]. Inverse Problems & Imaging, 2017, 6(2):201-214.
[12] KITAMURA T, IZUMI K, NAKAJIMA K, et al. Microlensed image centroid motions by an exotic lens object with negative convergence or negative mass[J]. Physical Review D, 2014, 89(8):1-2.
[13] CAMPANA R, MASSARO E, BERNIERI E, et al. Application of the MST clustering to the high energy, γ-ray sky. I-New possible detection of high-energy, γ-ray emission associated with BL Lac objects[J]. Astrophysics and Space Science, 2015, 360(2):1-10.
[14] MINGHU W U, ZHU X. Distributed video compressive sensing reconstruction by adaptive PCA sparse basis and nonlocal similarity[J]. Ksii Transactions on Internet & Information Systems, 2014, 8(8):2851-2865.
[15] GU Y, GOODMAN N A. Information-theoretic compressive sensing kernel optimization and Bayesian Cramér-Rao bound for time delay estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(17):4525-4537.
[16] HEGDE C, INDYK P, SCHMIDT L. Approximation algorithms for model-based compressive sensing[J]. IEEE Transactions on Information Theory, 2015, 61(9):5129-5147.
[1] 雷旭鹏, 杨健, 徐孟怀, 朱江, 龚旻. 自适应广义酉变换近似消息传递算法[J]. 清华大学学报(自然科学版), 2024, 64(4): 700-711.
[2] 石保顺, 刘政, 刘柯讯. 基于可训练对偶标架的模型驱动并行压缩感知磁共振成像算法及其收敛性分析[J]. 清华大学学报(自然科学版), 2024, 64(4): 712-723.
[3] 袁小虎, 吴热冰, 李春文. 基于分布式压缩感知的量子过程层析[J]. 清华大学学报(自然科学版), 2017, 57(10): 1089-1095.
[4] 李振强, 黄振, 陈曦, 葛宁. 微纳卫星编队的欠采样传输无源定位方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 650-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn