Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (5): 477-481    DOI: 10.16511/j.cnki.qhdxxb.2018.25.025
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
TIG电弧辅助MIG焊非接触引弧的参数适应性
汤莹莹, 朱志明, 杨中宇, 符平坡
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Parametric adaptability of TIG arc-induced non-contact MIG arc ignition
TANG Yingying, ZHU Zhiming, YANG Zhongyu, FU Pingpo
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(4668 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了深入了解钨极惰性气体保护(tungsten inert gas,TIG)电弧辅助熔化极惰性气体保护(metal inert gas,MIG)焊实现非接触引弧的特点,以及此种新型引弧方式对MIG焊接参数变化的适应性,该文通过TIG-MIG复合焊的大量引弧试验,利用电信号与电弧图像同步采集系统对此进行了试验研究。试验结果表明:先引燃的TIG电弧不仅能使MIG焊快速可靠地实现非接触引弧,而且能使MIG焊在较低的电压和电流条件下进入稳定的熔滴自由过渡,形成的焊缝规则且无飞溅附着;当MIG焊的初始送丝速度、焊枪倾角、保护气体流量以及焊丝末端直径在一个较大的范围内变化时,MIG焊在TIG电弧的辅助下均能够实现非接触引弧;根据焊丝末端直径匹配合适的初始送丝速度,即使焊丝末端带有较大尺寸的小球,MIG焊在非接触引弧过程中也不会产生焊接飞溅。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤莹莹
朱志明
杨中宇
符平坡
关键词 熔化极惰性气体保护(MIG)焊非接触引弧引弧可靠性焊接飞溅初始送丝速度焊丝末端直径    
Abstract:A series of arc ignition experiments using tungsten inert gas-metal inert gas (TIG-MIG) hybrid welding was conducted for various MIG welding parameters with simultaneous measurements of the arc voltage, the welding current and images of the TIG-MIG hybrid welding arc. These experiments studied the characteristics of the TIG arc-induced non-contact MIG arc ignition and its adaptability to the various MIG welding parameters. The results show that the initial TIG arc not only quickly enables the MIG welding to achieve non-contact arc ignition but also enables the MIG welding to enter a stable droplet-free transfer mode with a relatively low arc voltage and welding current. The weld appearance is more uniform than the conventional MIG welding with no spatter. The initial wire feed speed, welding torch inclination angle, shield gas flow rate and welding wire end diameter for the MIG welding could be varied over relatively wide ranges with non-contact arc ignition of the MIG welding when ignited by the TIG arc. If the initial wire feed speed is properly matched to the welding wire end diameter, no spatter is produced during the non-contact MIG arc ignition process even with large residual droplet on the end of the welding wire.
Key wordsmetal inert gas (MIG) welding    non-contact arc ignition    arc ignition reliability    welding spatter    initial wire feed speed    welding wire end diameter
收稿日期: 2017-08-10      出版日期: 2018-05-15
ZTFLH:  TG403  
基金资助:国家自然科学基金资助项目(51075231)
通讯作者: 朱志明,教授,E-mail:zzmdme@tsinghua.edu.cn     E-mail: zzmdme@tsinghua.edu.cn
作者简介: 汤莹莹(1988-),女,博士研究生。
引用本文:   
汤莹莹, 朱志明, 杨中宇, 符平坡. TIG电弧辅助MIG焊非接触引弧的参数适应性[J]. 清华大学学报(自然科学版), 2018, 58(5): 477-481.
TANG Yingying, ZHU Zhiming, YANG Zhongyu, FU Pingpo. Parametric adaptability of TIG arc-induced non-contact MIG arc ignition. Journal of Tsinghua University(Science and Technology), 2018, 58(5): 477-481.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.025  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I5/477
  图1 TIGGMIG复合焊接系统及其信息采集系统
  表1 TIG焊接参数
  图2 MIG电弧引燃过程的图像
  表2 MIG焊接参数
  图3 焊缝表面成形
  图4 MIG焊的电压与电流变化曲线
  图5 MIG电弧引燃时刻的图像
  图6 MIG焊非接触引弧过程中的飞溅与焊丝爆断
  图7 MIG焊非接触引弧过程无飞溅的临界条件
[1] ERSOY U, HU S J, KANNATEY-ASIBU E. Observation of arc start instability and spatter generation in GMAW[J]. Welding Journal, 2008, 87(2):51-56.
[2] MITA T. Spatter reduction-power source considerations[J]. Welding International, 1991, 5(11):847-850.
[3] STAVA E K. The surface-tension-transfer power source:A new low-spatter arc welding machine[J]. Welding Journal, 1993, 72(1):25-29.
[4] 杨修荣. 超薄板的MIG/MAG焊-CMT冷金属过渡技术[J]. 电焊机, 2006, 36(6):5-7.YANG X R. CMT cold metal transfer process[J]. Electric Welding Machine, 2006, 36(6):5-7. (in Chinese)
[5] 刚铁, 殷树言, 王克鸿, 等. 微机控制脉冲MIG焊引弧及收弧的研究[J]. 焊接, 1992(10):12-17. GANG T, YIN S Y, WANG K H, et al. Arc striking and ending of pulse MIG process controlled by MC[J]. Welding & Joining, 1992(10):12-17. (in Chinese)
[6] DOS SANTOS T F, DUTRA J C. Arc initiation in aluminium GMAW[J]. Welding International, 2010, 24(11):817-824.
[7] ERA T, IDE A, UEZONO T, et al. Spatter reduction in GMAW of stainless steel sheets using CBT process[J]. Welding International, 2013, 27(4):274-280.
[8] CHEN J H, SUN Z C, FAN D. Study of the mechanism of spatter produced by basic welding electrodes[J]. Welding Journal, 1996, 75(10):311-316.
[9] 娄小飞, 陈茂爱, 武传松, 等. 高速TIG-MIG复合焊焊缝驼峰及咬边消除机理[J]. 焊接学报, 2014, 35(8):87-90. LOU X F, CHEN M A, WU C S, et al. Humping and undercutting suppression mechanism for high speed TIG-MIG hybrid welding[J]. Transactions of the China Welding Institution, 2014, 35(8):87-90. (in Chinese)
[10] CHEN J, ZONG R, WU C S, et al. Influence of low current auxiliary TIG arc on high speed TIG-MIG hybrid welding[J]. Journal of Materials Processing Technology, 2017, 243:131-142.
[11] KANEMARU S, SASAKI T, SATO T, et al. Study for TIG-MIG hybrid welding process[J]. Welding in the World, 2014, 58(1):11-18.
[12] KANEMARU S, SASAKI T, SATO T, et al. Study for the mechanism of TIG-MIG hybrid welding process[J]. Welding in the World, 2015, 59(2):261-268.
[13] 王世博. 铝合金TIG-MIG复合焊电弧行为及熔滴过渡研究[D]. 哈尔滨:哈尔滨工业大学, 2016. WANG S B. Research on arc beheviour and metal transfer of TIG-MIG hybrid arc welding for aluminum alloy[D]. Harbin:Harbin Institute of Technology, 2016. (in Chinese)
[14] DING M, LIU S S, ZHENG Y, et al. TIG-MIG hybrid welding of ferritic stainless steels and magnesium alloys with Cu interlayer of different thickness[J]. Materials & Design, 2015, 88:375-383.
[1] 朱志明, 范开果, 刘晗, 王永东. 低气压对自保护药芯焊丝电弧特性的影响[J]. 清华大学学报(自然科学版), 2015, 55(7): 734-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn