Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (8): 768-772    DOI: 10.16511/j.cnki.qhdxxb.2018.25.034
  物理与工程物理 本期目录 | 过刊浏览 | 高级检索 |
北京市企业标准化评审结果分析方法
朱萸1, 陈涛1, 季学伟2, 张慧2, 吴爱枝2
1. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
2. 北京市安全生产科学技术研究院, 北京 100070
Analysis method for standardization reviews on Beijing enterprises
ZHU Yu1, CHEN Tao1, JI Xuewei2, ZHANG Hui2, WU Aizhi2
1. Institute of Safety Science and Technology, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Beijing Academy of Safety Science and Technology, Beijing 100070, China
全文: PDF(2607 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 北京市企业标准化评审后留下了一万多家企业百万余条评分结果,在海量数据的支撑下,可以采用大数据分析手段来探索各扣分项扣分频次之间的相关关系。目前最常用的方法是关联规则挖掘,然而关联规则挖掘只能给出定性的相关关系,无法在定量方面给出结论,使得对数据的信息挖掘停留在定性的水平。神经网络作为另外一种广泛应用的数据挖掘方法能够有效拟合复杂的非线性关系,但是在数据挖掘中,神经网络在输入输出选择上存在很高的试错成本。该文将关联规则挖掘与神经网络方法结合使用,首先用关联规则挖掘筛选出扣分项之间的关联规则逻辑,然后将选出的关联规则作为神经网络的输入与输出进行训练,找到了18项扣分项之中的3项与其他8项之间的强相关关系,神经网络预测值与实际值之间拟合直线的相关系数达到了0.84以上。实验结果表明:该方法可以实现对企业扣分项的相关关系挖掘,并可以将结果用于扣分频次预测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱萸
陈涛
季学伟
张慧
吴爱枝
关键词 安全生产关联规则频繁模式增长法反向传播神经网络    
Abstract:There are over one million items from ten thousand enterprises in the Beijing Enterprise Standardization Review. Big data analytical methods can be used to analyze the relationships between the deduction counts of the review items because of the large data volume. The most popular method is association rules, but these are qualitative, not quantitative. Neural network, another widely used data mining method, are able to solve complex non-linear problems but requires much effort to choose the suitable inputs and targets. This article combines these two methods with the association rules used to select the inputs and targets from the review items and the neural network used to relate the inputs and the targets. A test gave a strong correlation between 3 selected review items and 8 other review items with a correlation coefficient of the fitting curve of over 0.84 between the predicted targets and the real value. Thus, this combined method can improve data mining of the enterprises review items with the result used to predict the deduction counts of the selected items.
Key wordsproduction safety    association rules    frequency pattern growth    back propagation neural networ
收稿日期: 2017-10-18      出版日期: 2018-08-15
基金资助:科技部“十二五”科技支撑计划(2015BAK10B02);北京市科委项目(Z161100001116010)
通讯作者: 陈涛,副研究员,E-mail:chentao.a@tsinghua.edu.cn     E-mail: chentao.a@tsinghua.edu.cn
引用本文:   
朱萸, 陈涛, 季学伟, 张慧, 吴爱枝. 北京市企业标准化评审结果分析方法[J]. 清华大学学报(自然科学版), 2018, 58(8): 768-772.
ZHU Yu, CHEN Tao, JI Xuewei, ZHANG Hui, WU Aizhi. Analysis method for standardization reviews on Beijing enterprises. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 768-772.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.034  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I8/768
  表1 二级企业扣分项名称编号表
  表2 分析数据样例
  表3 关联规则1
  表4 关联规则2
  表5 关联规则3
  图1 关联规则表格1神经网络结果
  图2 关联规则表格2神经网络结果
  图3 关联规则表格3神经网络结果
[1] AGRAWAL R, SRIKANT R. Fast algorithms for mining association rules in large databases[C]//Proceedings of the 20th International Conference on Very Large Data Bases. Santiago de Chile, Chile:Morgan Kaufmann Publishers Inc., 1994:487-499.
[2] NEBOT V, BERLANGA R. Finding association rules in semantic web data[J]. Knowledge-Based Systems, 2012, 25(1):51-62.
[3] KAMSU-FOGUEM B, RIGAL F, MAUGET F. Mining association rules for the quality improvement of the production process[J]. Expert Systems with Applications, 2013, 40(4):1034-1045.
[4] 李晓兰, 曹晓钟, 朱君, 等. 基于关联规则挖掘的自动站观测数据相关性分析[J]. 气象科技, 2016, 44(5):715-721.LI X L, CAO X Z, ZHU J, et al. Correlation analysis of observation data from automatic stations based on association rule mining[J]. Meteorological Science and Technology, 2016, 44(5):715-721. (in Chinese)
[5] 林颖华, 陈长凤. 基于关联规则的企业财务风险评价研究[J]. 会计之友, 2017(1):32-35.LIN Y H, CHEN C F. Research on enterprise financial risk evaluation based on association rules[J]. Friends of Accounting, 2017(1):32-35. (in Chinese)
[6] RUMELHART D E, MCCLELLAND J L, PDP RESEARCH GROUP. Parallel distributed processing[M]. Cambridge, MA:MIT Press, 1987.
[7] REN C, AN N, WANG J Z, et al. Optimal parameters selection for BP neural network based on particle swarm optimization:A case study of wind speed forecasting[J]. Knowledge-Based Systems, 2014, 56:226-239.
[8] WANG J D, FANG K J, PANG W J, et al. Wind power interval prediction based on improved PSO and BP neural network[J]. Journal of Electrical Engineering and Technology, 2017, 12(3):989-995.
[9] XIAO Z, YE S J, ZHONG B, et al. BP neural network with rough set for short term load forecasting[J]. Expert Systems with Applications, 2009, 36(1):273-279.
[10] ZHANG Y D, WU L N. Stock market prediction of S & P 500 via combination of improved BCO approach and BP neural network[J]. Expert Systems with Applications, 2009, 36(5):8849-8854.
[11] 罗前林. 600MW超临界机组主要运行参数目标值优化[D]. 武汉:华中科技大学, 2012.LUO Q L. The target value optimization of operating parameters of 600MW supercritical units[D]. Wuhan:Huazhong University of Science and Technology, 2012. (in Chinese)
[12] KARABATAK M, INCE M C. An expert system for detection of breast cancer based on association rules and neural network[J]. Expert Systems with Applications, 2009, 36(2):3465-3469.
[13] 晏杰, 亓文娟. 基于Aprior & FP-growth算法的研究[J]. 计算机系统应用, 2013, 22(5):122-125.YAN J, QI W J. Research based on Aprior & FP-growth algorithm[J]. Computer Systems & Applications, 2013, 22(5):122-125. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn