Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (11): 986-991    DOI: 10.16511/j.cnki.qhdxxb.2018.25.041
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
积水情况下颗粒材料碰撞恢复系数
陈宇龙1, 张科2
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 昆明理工大学 电力工程学院, 昆明 650500
Coefficient of restitution of granular material at the seeper condition
CHEN Yulong1, ZHANG Ke2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. Faculty of Electric Power Engineering, Kunming University of Science and Technology, Kunming 650500, China
全文: PDF(1884 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在研究滚石的运动规律过程中,滚石的碰撞恢复系数是重要的控制参数。该文研究了积水情况下滚石的碰撞恢复系数。采用球状的玻璃珠代替岩块,利用高速摄像系统对玻璃珠运动全过程进行摄像,获得了滚石碰撞前后的速度,进而得到碰撞恢复系数,探讨了不同降落高度和积水深度对碰撞恢复系数的影响规律。通过分析积水情况下玻璃珠与刚性底座碰撞和回弹过程中的受力,建立了积水情况下的滚石碰撞模型。结果表明:积水出现后,恢复系数随着积水深度的增大而减小,随着降落高度的升高而增大,积水的存在极大程度上降低了恢复系数。玻璃珠在与积水接触过程中,一部分能量将转化为积水的动能与液相桥的重力势能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇龙
张科
关键词 滚石恢复系数积水    
Abstract:The motion of a rockfall is strongly dependent on the coefficient of restitution. This study investigates the coefficient of restitution in the presence of seeper. The coefficient of restitution was measured for various rockfall and seeper fall heights. The influences of the seeper depth and the fall height of the glass beads acting as the rockfall on the coefficient of restitution were investigated during normal impact on a flat steel wall with a seeper layer using free-fall experiments with a high-speed camera used to capture the collision mechanics. A collision model was then developed for the glass beads and the seeper on the rigid wall. The model took into account the viscous, surface tension, capillary, contact, drag, buoyancy and gravitational forces acting on the bead. The results show that the seeper significantly reduces the coefficient of restitution. Deeper seeper layers then dissipate more energy during the collisions that gives smaller coefficients of restitution. The coefficient of restitution increased with increasing bead fall height with part of the energy transferred from the glass bead to the seeper.
Key wordsrockfalls    coefficient of restitution    seeper
收稿日期: 2018-01-26      出版日期: 2018-11-21
基金资助:国家自然科学基金资助项目(41762021);中国博士后科学基金资助项目(2017M620048,2016M592717,2017T100715,2018T110103)
通讯作者: 张科,副教授,E-mail:zhangke_csu@163.com     E-mail: zhangke_csu@163.com
引用本文:   
陈宇龙, 张科. 积水情况下颗粒材料碰撞恢复系数[J]. 清华大学学报(自然科学版), 2018, 58(11): 986-991.
CHEN Yulong, ZHANG Ke. Coefficient of restitution of granular material at the seeper condition. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 986-991.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.041  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I11/986
  图1 滚石碰撞模型[4]
  图2 实验系统示意图
  图3 降落高度和积水深度与恢复系数关系曲线
  图4 测量误差
  图5 玻璃珠自由降落、 与刚性底座相碰撞和回弹过程
  图6 积水深度5mm 的碰撞过程
  图7 积水深度与液相桥高度关系曲线
  图8 玻璃珠运动过程中的速率变化曲线
  图9 碰撞与回弹过程中的受力
[1] RITCHIE A M. Evaluation of rockfall and its control[J]. Highway Research Record, 1963(17):13-28.
[2] KIRKBY M J, STATHAM I. Surface stone movement and scree formation[J]. The Journal of Geology, 1975, 83(3):349-362.
[3] 陈宇龙. 滚石运动过程中关键参数的影响分析[J]. 岩土工程学报, 2013, 35(S2):191-196. CHEN Y L. Influence of key factors on trajectories of rockfalls[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2):191-196. (in Chinese)
[4] ASTERIOU P, TSIAMBAOS G. Empirical model for predicting rockfall trajectory direction[J]. Rock Mechanics and Rock Engineering, 2016, 49(3):927-941.
[5] AZZONI A, DE FREITAS M H. Experimentally gained parameters, decisive for rock fall analysis[J]. Rock Mechanics and Rock Engineering, 1995, 28(2):111-124.
[6] DAY R W. Case studies of rockfall in soft versus hard rock[J]. Environmental and Engineering Geoscience, 1997, 3(1):133-140.
[7] CHAU K T, WONG R H C, WU J J. Coefficient of restitution and rotational motions of rockfall impacts[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(1):69-77.
[8] PATEL A, BARTAKE P P, SINGH D N. An empirical relationship for determining shear wave velocity in granular materials accounting for grain morphology[J]. Geotechnical Testing Journal, 2009, 32(1):1-10.
[9] YANG J, GU X Q. Shear stiffness of granular material at small strains:Does it depend on grain size?[J]. Géotechnique, 2013, 63(2):165-179.
[10] KOKUSHO T, YOSHIDA Y. SPT N-value and S-wave velocity for gravelly soils with different grain size distribution[J]. Soils and Foundations, 1997, 37(4):105-113.
[11] TOKER N K, GERMAINE J T, CULLIGAN P J. Effective stress and shear strength of moist uniform spheres[J]. Vadose Zone Journal, 2014, 13(5):1-13.
[12] ORR F M, SCRIVEN L E, RIVAS A P. Pendular rings between solids:Meniscus properties and capillary force[J]. Journal of Fluid Mechanics, 1975, 67(4):723-742.
[13] SCHUBERT H. Capillary forces-modeling and application in particulate technology[J]. Powder Technology, 1984, 37(1):105-116.
[14] SIMONS S J R, PEPIN X, ROSSETTI D. Predicting granule behaviour through micro-mechanistic investigations[J]. International Journal of Mineral Processing, 2003, 72(1-4):463-475.
[15] WILLETT C D, ADAMS M J, JOHNSON S A, et al. Effects of wetting hysteresis on pendular liquid bridges between rigid spheres[J]. Powder Technology, 2003, 130(1-3):63-69.
[16] WHYMAN G, BORMASHENKO E, STEIN T. The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon[J]. Chemical Physics Letters, 2008, 450(4-6):355-359.
[17] BUSSCHER H J, VAN PELT A W J, DE BOER P, et al. The effect of surface roughening of polymers on measured contact angles of liquids[J]. Colloids and Surfaces, 1984, 9(4):319-331.
[18] 陈宇龙, 内村太郎. 粒径对土持水性能的影响[J]. 岩石力学与工程学报, 2016, 35(7):1474-1482. CHEN Y L, UCHIMURA T. Influence of particle size on water retention of soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1474-1482. (in Chinese)
[19] PALZER S, HIEBL C, SOMMER K, et al. Einfluss der rauhigkeit einer feststoffoberfläche auf den kontaktwinkel[J]. Chemie Ingenieur Technik, 2001, 73(8):1032-1038.
[20] HERTZ H. Ueber die Berührung fester elastischer Kö rper[J]. Journal für die Reine und Angewandte Mathematik, 1881(92):156-171.
[21] TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3):239-250.
[22] LIAN G P, XU Y, HUANG W B, et al. On the squeeze flow of a power-law fluid between rigid spheres[J]. Journal of Non-Newtonian Fluid Mechanics, 2001, 100(1-3):151-164.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn