Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (11): 979-985    DOI: 10.16511/j.cnki.qhdxxb.2018.25.043
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
基于双轴图像的自密实混凝土工作性能分析
丁仲聪, 安雪晖
清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084
Analysis of self-compacting concrete workability based on twin-shaft mixing images
DING Zhongcong, AN Xuehui
State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(3760 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 自密实混凝土(self-compacting concrete,SCC)的工作性能反映在其搅拌过程中,可以通过分析搅拌图像对工作性能的好坏进行初步的判断。该文利用双轴搅拌机搅拌了具备不同工作性能的8组SCC,并利用智能手机录制视频,采集了全部搅拌过程的图像信息。然后,从图像序列中选取感兴趣的图像和感兴趣的区域(region of interest,ROI),利用图像分析手段进行量化的比较。搅拌机指定叶片与转轴呈45°时的图像选为感兴趣的图像。ROI中的SCC轮廓线形状可以用作区分SCC的SF值的视觉特征。利用轮廓线上横坐标为300像素的点的纵坐标Y300,可以提炼轮廓线特征,并用于推算SCC的SF值。研究结果表明:Y300与SCC的SF值之间存在较好的相关关系,推算结果误差较小,可以用于开发基于双轴搅拌机的SCC工作性能实时检测系统。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁仲聪
安雪晖
关键词 自密实混凝土工作性能双轴搅拌机图像特征    
Abstract:The movement of self-compacting concrete (SCC) during mixing reflects its workability. Therefore, the SCC workability can be quantified by analyzing mixing images. In this study, eight concrete specimens with different workabilities were produced in a twin-shaft mixer. A smart phone was used to record all the mixing processes. Afterwards, images of interest and regions of interest (ROI) were selected from the image sequences for quantitative comparisons. The image of interest was the moment when a blade arm formed a 45° angle with the shaft before the mixer stopped. The SCC contour within the ROI was used as an indicator to indicate the SCC workability. The Y coordinate of the point with an X coordinate of 300 pixels (Y300) was used to describe the SCC contour and to estimate SF. The results show that Y300 is directly related to SF with a small relative error. This method can be used in a real-time monitoring system to estimate the SCC workability during mixing.
Key wordsself-compacting concrete    workability    twin-shaft mixer    visual features
收稿日期: 2018-03-02      出版日期: 2018-11-21
基金资助:国家科技支撑计划项目(2015BAB07B07)
通讯作者: 安雪晖,教授,E-mail:anxue@tsinghua.edu.cn     E-mail: anxue@tsinghua.edu.cn
引用本文:   
丁仲聪, 安雪晖. 基于双轴图像的自密实混凝土工作性能分析[J]. 清华大学学报(自然科学版), 2018, 58(11): 979-985.
DING Zhongcong, AN Xuehui. Analysis of self-compacting concrete workability based on twin-shaft mixing images. Journal of Tsinghua University(Science and Technology), 2018, 58(11): 979-985.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.043  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I11/979
  图1 双轴搅拌机(图中数字为叶片编号)
  图2 数码相机安装位置示意图
  表1 SCC质量配合比设计
  表2 SCC性能检测试验结果
  图3 No.4样本的感兴趣图像
  图4 ROI在感兴趣图像中的位置与尺寸
  图5 所有试验样本的 ROI与轮廓线
  图6 图像处理方法识别SCC轮廓线
  图7 手选轮廓线与自动提取轮廓线的结果比较
  图8 不同工作性能的SCC轮廓线形状特征
  表3 SCC的SF值与Y300
  图9 Y300与SF之间的关系
  图10 试验SF值与推算SF值之间的关系
  图11 基于量化指标推算SCC的SF值框架
[1] OKAMURA H, OUCHI M. Self-compacting concrete[J]. Journal of Advanced Concrete Technology, 2003, 1(1):1-5.
[2] AN X H, WU Q, JIN F, et al. Rock-filled concrete, the new norm of SCC in hydraulic engineering in China[J]. Cement and Concrete Composites, 2014, 54:89-99.
[3] WU Q, AN X H. Development of a mix design method for SCC based on the rheological characteristics of paste[J]. Construction and Building Materials, 2014, 53:642-651.
[4] FERRARIS C, BROWER L, OZYILDIRIM C, et al. Workability of self-compacting concrete[C]//PCI/FHWA/FIB International Symposium on High Performance Concrete. Orlando Florida, United States:NIST, 2000:398-407.
[5] 李书阳, 沈乔楠, 安雪晖, 等. 基于增强现实的混凝土坍落扩展度测量[J]. 清华大学学报(自然科学版), 2012, 52(6):809-813. LI S Y, SHEN Q N, AN X H, et al. Slump flow measurements based on augmented reality[J]. Journal of Tsinghua University (Science and Technology), 2012, 52(6):809-813. (in Chinese)
[6] DAUMANN B, NIRSCHL H. Assessment of the mixing efficiency of solid mixtures by means of image analysis[J]. Powder Technology, 2008, 182(3):415-423.
[7] JUEZ J M, ARTONI R, CAZACLIU B. Monitoring of concrete mixing evolution using image analysis[J]. Powder Technology, 2017, 305:477-487.
[8] BERTHIAUX H, MOSOROV V, TOMCZAK L, et al. Principal component analysis for characterising homogeneity in powder mixing using image processing techniques[J]. Chemical Engineering and Processing:Process Intensification, 2006, 45(5):397-403.
[9] LI S Y, AN X H. Method for estimating workability of self-compacting concrete using mixing process images[J]. Computers and Concrete, 2014, 13(6):781-798.
[10] LI L G, KWAN A K H. Concrete mix design based on water film thickness and paste film thickness[J]. Cement and Concrete Composites, 2013, 39:33-42.
[11] GIRISH S, RANGANATH R V, VENGALA J. Influence of powder and paste on flow properties of SCC[J]. Construction and Building Materials, 2010, 24(12):2481-2488.
[12] CAZACLIU B. In-mixer measurements for describing mixture evolution during concrete mixing[J]. Chemical Engineering Research and Design, 2008, 86(12):1423-1433.
[13] CARRON T, LAMBERT P. Color edge detector using jointly hue, saturation and intensity[C]//Proceedings of the 1st International Conference on Image Processing. Austin, USA:IEEE, 1994.
[14] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979(1):62-66.
[15] HADDON J F, BOYCE J F. Image segmentation by unifying region and boundary information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):929-948.
[1] 吕淼, 安雪晖, 李鹏飞, 张京斌, 白皓. 自密实混凝土全过程智能生产研究进展[J]. 清华大学学报(自然科学版), 2022, 62(8): 1270-1280.
[2] 王辉, 马嘉均, 周虎, 何世钦, 金峰. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346.
[3] 聂鼎, 安雪晖. 基于图像处理的净浆扩展度测量工具开发[J]. 清华大学学报(自然科学版), 2016, 56(12): 1249-1254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn