Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 865-871    DOI: 10.16511/j.cnki.qhdxxb.2018.25.044
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
基于等效单轴应变的平面模型及其在密肋复合墙板中的应用
孙静1, 王昆鹏2
1. 北京交通大学 土木建筑工程学院, 北京 100044;
2. 中车建设工程有限公司, 北京 100078
In-plane model for masonry based on the equivalent strain concept
SUN Jing1, WANG Kunpeng2
1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China;
2. CRRC Construction Engrg. CO., LTD., Beijing 100078, China
全文: PDF(2992 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了解决密肋复合墙板中填充砌体在受到循环荷载作用时的平面数值分析问题,该文基于等效单轴应变原理,建立了一个宏观砌体平面材料模型,并将该材料模型与平面应力单元相结合,开发了相应程序。最后,将平面模型与纤维模型相结合对密肋复合墙板进行了模拟分析。结果表明:该模型在模拟处于平面应力状态下的密肋复合墙板时具有较为理想的效果,在满足计算精度的同时,又能充分体现砌体构件的宏观现象,可较为直观地获得砌体结构的应力分布云图,验证了该模型的正确性和适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙静
王昆鹏
关键词 密肋复合墙板等效单轴应变平面模型纤维模型    
Abstract:A simple constitutive model was developed to calculate the in-plane stresses of multi-ribbed composite walls subject to cyclic loadings. The equivalent strain concept was used to develop the macro in-plane model for masonry walls with the in-plane model then implemented in plane-stress finite elements. The in-plane model and a fiber model were then combined to simulate the stresses in multi-ribbed composite walls. The results show that the model accurately simulates the stresses in a multi-ribbed composite wall under plane stresses. The accurate results fully reflect the macroscopic phenomena in the masonry components and the stress distribution cloud diagram in the masonry structure is more intuitive. These results verify the accuracy and applicability of the model.
Key wordsmulti-ribbed composite wall    equivalent strain concept    in-plane model    fiber model
收稿日期: 2017-11-22      出版日期: 2018-10-17
基金资助:国家自然科学基金资助项目(51678031)
引用本文:   
孙静, 王昆鹏. 基于等效单轴应变的平面模型及其在密肋复合墙板中的应用[J]. 清华大学学报(自然科学版), 2018, 58(10): 865-871.
SUN Jing, WANG Kunpeng. In-plane model for masonry based on the equivalent strain concept. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 865-871.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.044  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/865
  图1 密肋复合墙板示意图
  图2 纤维模型
  图3 离散型实体模型
  图4 Polykavo等效斜压杆模型
  图5 砌体拉/压骨架曲线
  图6 砌体滞回规则
  图7 砌体剪切骨架曲线及其加卸载规则
  图8 砌体平面本构模型程序流程图
  图9 标准密肋复合墙板尺寸及配筋图(单位: mm)
  表1 钢筋参数
  图10 钢筋/混凝土本构模型
  表2 砌块参数
  表3 混凝土参数
  图11 标准密肋复合墙板纤维 平面模型
  图12 密肋复合墙板计算曲线与试验曲线对比
  图13 (网络版彩图)极限荷载状态下的结果对比
[1] 姚谦峰, 陈平, 张荫, 等. 密肋壁板轻框结构节能住宅体系研究[J]. 工业建筑, 2003, 33(1):1-5. YAO Q F, CHEN P, ZHANG Y, et al. Study on energy-saving residential system of multi-ribbed wall slab with light-weight outer frame[J]. Industrial Construction, 2003, 33(1):1-5. (in Chinese)
[2] 聂建国, 陶慕轩. 采用纤维梁单元分析钢-混凝土组合结构地震反应的原理[J]. 建筑结构学报, 2011, 32(10):11-20. NIE J G, TAO M X. Theory of seismic response analysis of steel-concrete composite structures using fiber beam elements[J]. Journal of Building Structures, 2011, 32(10):11-20. (in Chinese)
[3] 王昆鹏. 密肋复合板结构非线性有限元模型研究[D]. 北京:北京交通大学, 2017. WANG K P. Research on nonlinear finite element models of multi-ribbed composite slab structure[D]. Beijing:Beijing Jiaotong University, 2017. (in Chinese)
[4] 朱伯龙, 金国芳. "混用体系"中型砌块墙片有限元弹塑性分析[J]. 同济大学学报, 1994, 22(1):1-6. ZHU B L, JIN G F. Finite element analysis of mixed block masonry system with middle size blocks[J]. Journal of Tongji University, 1994, 22(1):1-6. (in Chinese)
[5] 王达诠. 应用RVE均质化方法的砌体非线性分析[D]. 重庆:重庆大学, 2002. WANG D Q. Nonlinear analysis of masonry applying the RVE homogenization methods[D]. Chongqing:Chongqing University, 2002. (in Chinese)
[6] 吴方伯, 丁先立, 周绪红, 等. 采用等效平面桁架单元对钢筋混凝土结构进行非线性分析[J]. 建筑结构学报, 2005, 26(5):112-117. WU F B, DING X L, ZHOU X H, et al. Study on the nonlinear analysis of reinforced concrete structures by equivalent plane truss element method[J]. Journal of Building Structures, 2005, 26(5):112-117. (in Chinese)
[7] DARWIN D, PECKNOLD D A. Analysis of RC shear panels under cyclic loading[J]. American Society of Civil Engineers, 2014, 102(2):355-369.
[8] KARAPITTA L, MOUZAKIS H, CARYDIS P. Explicit finite-element analysis for the in-plane cyclic behavior of unreinforced masonry structures[J]. Earthquake Engineering and Structural Dynamics, 2011, 40(2):175-193.
[9] BAŽANT Z P, OH B H. Crack band theory for fracture of concrete[J]. Matériaux et Construction, 1983, 16(3):155-177.
[10] LIU G Q, SHI C X, BIN J L. The shear strength of unreinforced masonry wall[J]. Journal of Zhuzhou Institute of Technology, 1999, 13(5):52-55.
[11] 张杰. 密肋复合墙板受力性能及斜截面承载力实用设计计算方法研究[D]. 西安:西安建筑科技大学, 2004. ZHANG J. Mechanical property study and practical oblique section design method study on multi-ribbed composite wall[D]. Xi'an:Xi'an University of Architecture and Technology, 2004. (in Chinese)
[12] 曲哲, 叶列平. 基于有效累积滞回耗能的钢筋混凝土构件承载力退化模型[J]. 工程力学, 2011, 28(6):45-51. QU Z, YE L P. Strength deterioration model based on effective hysteretic energy dissipation for RC members under cyclic loading[J]. Engineering Mechanics, 2011, 28(6):45-51. (in Chinese)
[13] HOGNESTAD E. Study of combined bending and axial load in reinforced concrete members[R]. Bulletin Series of No. 399. Station, Urbana, IL:University of Illinois, 1951.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn