Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (3): 228-235    DOI: 10.16511/j.cnki.qhdxxb.2018.25.051
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
节能型异质汽车队列的切换式有界稳定控制
辛喆1, 张小雪1, 陈海亮1, 邵明玺1, 徐晨翔1, 李升波2
1. 中国农业大学 工学院, 北京 100083;
2. 清华大学 汽车工程系, 北京 100084
Bounded stabilizing control for fuel economy-oriented heterogeneous vehicle platoon
XIN Zhe1, ZHANG Xiaoxue1, CHEN Hailiang1, SHAO Mingxi1, XU Chenxiang1, LI Shengbo2
1. College of Engineer, China Agricultural University, Beijing 100083, China;
2. Department of Automotive Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5445 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 车辆的队列化行驶具有降低道路交通能耗的巨大潜力。现有节能型队列研究主要通过高速近距跟车以减小后方车辆的风阻从而提高经济性,但对车间距离的控制精度要求很高。为克服该方法的不足,该文提出了一种适用于异质汽车队列的切换式节能控制方法,通过将周期性切换控制策略(即加速-滑行策略)应用于车辆队列,实现多车之间的协同节能。所设计的控制方法可使该汽车队列在保证跟车间距有界的前提下实现优异的节油效果,克服了近距跟车的安全性隐患。仿真结果表明:队列车辆都保持在期望的跟车间距范围内,且与线性二次型(linear quadratic,LQ)最优控制器相比,达到约23.3%的节油效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
辛喆
张小雪
陈海亮
邵明玺
徐晨翔
李升波
关键词 智能汽车汽车队列切换控制燃油经济性    
Abstract:The platooning of automated vehicles can greatly improve the fuel efficiency of road transportation. Current studies will reduce fuel consumption by using very short car-following distances to reduce the aerodynamic drag on the following vehicles, which increases rear-end collision risks. This paper presents a periodic control method, pulse and glide (PnG) operation, for heterogeneous vehicle platoons to minimize the overall fuel consumption. The switching control method controls each vehicle to maintain the given the inter-vehicle distance while reducing the fuel consumption. Simulations show that this controller can maintain the inter-vehicle distance within a bounded range and reduce fuel consumption by up to 23.3% compared to linear quadratic (LQ) controllers.
Key wordsautonomous vehicles    vehicle platoons    periodic control    fuel economy
收稿日期: 2018-05-04      出版日期: 2019-03-19
基金资助:国家自然科学基金资助项目(51575293,51622504);“十三五”国家重点研发计划课题项目(2016YFB0100906)
引用本文:   
辛喆, 张小雪, 陈海亮, 邵明玺, 徐晨翔, 李升波. 节能型异质汽车队列的切换式有界稳定控制[J]. 清华大学学报(自然科学版), 2019, 59(3): 228-235.
XIN Zhe, ZHANG Xiaoxue, CHEN Hailiang, SHAO Mingxi, XU Chenxiang, LI Shengbo. Bounded stabilizing control for fuel economy-oriented heterogeneous vehicle platoon. Journal of Tsinghua University(Science and Technology), 2019, 59(3): 228-235.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.051  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I3/228
  图1 队列跟车子系统
  图2 相平面分区控制图
  表1 相邻两车系统的4种模式
  图3 (网络版彩图) 所有情况下各模式的状态轨迹线
  图4 分区控制示意图
  表2 分区控制中的开关线表达
  表3 各区域的控制量
  图5 相点位于闭环上的相轨迹
  图6 相点位于闭环外的相轨迹
  图7 相点位于闭环内的相轨迹
  表4 每辆车加速和滑行阶段的加速度
  图8 队列中部分车辆速度图
  图9 车2的相轨迹图和加速度图
  图1 0 车9的相轨迹和加速度图
  图1 1 Δv-ΔR 相平面上车2的相轨迹图
  图1 2 Δv-ΔR 相平面上车9的相轨迹图
  图1 3 PnG控制器的节油效果
[1] European Commission. EU transport in figures-Statistical pocketbook[M]. Luxembourg:Publications Office of the European Union, 2013.
[2] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411):294-303.
[3] BARKENBUS J N. Eco-driving:An overlooked climate change initiative[J]. Energy Policy, 2010, 38(2):762-769.
[4] 李升波, 徐少兵, 王文军, 等. 汽车经济性驾驶技术及应用概述[J]. 汽车安全与节能学报, 2014, 5(2):121-131. LI S B, XU S B, WANG W J, et al. Overview of ecological driving technology and application for ground vehicles[J]. Journal of Automotive Safety and Energy, 2014, 5(2):121-131. (in Chinese)
[5] LI S B, PENG H. Strategies to minimize the fuel consumption of passenger cars during car-following scenarios[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2011, 226(3):419-429.
[6] LI S B, HU X S, LI K Q, et al. Mechanism of vehicular periodic operation for optimal fuel economy in free-driving scenarios[J]. IET Intelligent Transport Systems, 2015, 9(3):306-313.
[7] LI S B, PENG H, LI K Q, et al. Minimum fuel control strategy in automated car-following scenarios[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3):998-1007.
[8] LEE J, NELSON D, LOHSE-BUSCH H. Vehicle inertia impact on fuel consumption of conventional and hybrid electric vehicles using acceleration and coast driving strategy[R]. SAE International No:2009-01-1322, 2009.
[9] LI S B, GUO Q Q, XIN L, et al. Fuel-saving servo-loop control for an adaptive cruise control cystem of road vehicles with step-gear transmission[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3):2033-2043.
[10] XU S B, LI S B, ZHANG X W, et al. Fuel-optimal cruising strategy for road vehicles with step-gear mechanical transmission[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6):3496-3507.
[11] XU S B, LI S B, PENG H, et al. Fuel-saving cruising strategies for parallel HEVs[J]. IEEE Transactions on Vehicular Technology, 2016, 65(6):4676-4686.
[12] AL ALAM A, GATTAMI A, JOHANSSON K H. An experimental study on the fuel reduction potential of heavy duty vehicle platooning[C]//Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal:IEEE, 2010.
[13] BVHLER L. Fuel-efficient platooning of heavy duty vehicles through road topography preview information[D]. Stockholm, Sweden:KTH Royal Institute of Technology, 2013.
[14] ALAM A. Fuel-efficient distributed control for heavy duty vehicle platooning[D]. Stockholm, Sweden:KTH Royal Institute of Technology, 2011.
[15] TSUGAWA S, KATO S, AOKI K. An automated truck platoon for energy saving[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems 2011(CD-ROM). San Francisco, CA, USA:IEEE, 2011.
[16] RAJAMANI R, TAN H S, LAW B K, et al. Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4):695-708.
[17] LI S E, PENG H. Strategies to minimize the fuel consumption of passenger cars during car-following scenarios[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2012, 226(3):419-429.
[18] IOANNOU P A, CHIEN C C. Autonomous intelligent cruise control[J]. IEEE Transactions on Vehicular Technology, 1993, 42(4):657-672.
[19] RAJAMANI R. Vehicle dynamics and control[M]. Boston, MA:Springer Science & Business Media, 2012.
[20] LIN T W, HWANG S L, GREEN P A. Effects of time-gap settings of adaptive cruise control (ACC) on driving performance and subjective acceptance in a bus driving simulator[J]. Safety Science, 2009, 47(5):620-625.
[21] ZHOU J, PENG H. Range policy of adaptive cruise control vehicles for improved flow stability and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2):229-237.
[1] 陈亮, 秦兆博, 孔伟伟, 陈鑫. 基于最优前轮侧偏力的智能汽车LQR横向控制[J]. 清华大学学报(自然科学版), 2021, 61(9): 906-912.
[2] 付骁鑫, 江永亨, 黄德先, 王京春, 黄开胜. 基于最优计算量分配的公路轨迹规划[J]. 清华大学学报(自然科学版), 2016, 56(3): 273-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn