Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (6): 417-424    DOI: 10.16511/j.cnki.qhdxxb.2018.25.052
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
基于改进磁链估算器的航空飞轮电机起动性能
吕凯雄, 周明, 谢之峰, 卜建国
清华大学 航空发动机研究院, 北京 100084
Flux estimator for starting of an aero flywheel motor
LÜ Kaixiong, ZHOU Ming, XIE Zhifeng, BU Jianguo
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1404 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 航空飞轮电机(aero flywheel motor)是将航空活塞发动机(piston aero-engine)的起动机、飞轮和发电机集成为一体的新型电机。鉴于航空发动机的特殊要求,具有响应速度快、控制结构简单、鲁棒性好等优点的直接转矩控制(direct torque control,DTC)适合作为航空飞轮电机的起动算法。直接转矩控制的一个核心环节是磁链估算器,它主要受磁链初值、直流偏移、电阻变化、逆变器非线性等的影响。为了解决这一问题,该文设计了一种改进的低通滤波式磁链估算器,通过对航空飞轮电机的转子进行定位来确定磁链初值,并把逆变器非线性的影响转换为对电阻实时补偿的问题,并基于改进的磁链估算器进行了航空飞轮电机起动仿真。结果表明:改进的磁链估算器改善了航空飞轮电机起动瞬间的收敛性,并降低了电磁转矩和直轴电流波动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 航空活塞发动机航空飞轮电机直接转矩控制磁链估算器电阻补偿    
Abstract:Aero flywheel motors integrate a starter, flywheel, and generator in a heavy fuel piston aero-engine. Direct torque control (DTC) gives quick dynamic response, has a simple structure, and is very robust so it is the best choice for controlling aero flywheel motors. The flux estimator, the most important part of the controller, is influenced by the initial value, DC offset, resistor error, and inverter nonlinearity. This paper describes a flux estimator based on a low pass filter (LPF) to improve the estimates. Simulations of the aero flywheel motor starting performance with this flux estimator show that that the starting performance is improved.
Key wordspiston aero-engine    aero flywheel motor    direct torque control    flux estimator    resistor compensation
收稿日期: 2018-05-24      出版日期: 2019-06-01
通讯作者: 谢之峰,助理研究员,E-mail:xzhf@tsinghua.edu.cn     E-mail: xzhf@tsinghua.edu.cn
引用本文:   
吕凯雄, 周明, 谢之峰, 卜建国. 基于改进磁链估算器的航空飞轮电机起动性能[J]. 清华大学学报(自然科学版), 2019, 59(6): 417-424.
LÜ Kaixiong, ZHOU Ming, XIE Zhifeng, BU Jianguo. Flux estimator for starting of an aero flywheel motor. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 417-424.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.052  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I6/417
  表1 航空飞轮电机参数
  表2 重油航空活塞发动机参数
  图1 气压力矩示意图
  图2 惯性力矩示意图
  图3 传统 DTC控制系统
  图4 磁链估算器 Estimator0
  图5 考虑初值问题的磁链估算器
  图6 电阻补偿方法
  图7 改进的磁链估算器 Estimator1
  图8 最大偏差角与负载关系
  表3 负载为发动机时的最大偏差角
  图9 偏差角为零, 转矩/电流曲线
  图10 偏差角为 Maxθm, 转矩/电流曲线
  图11 偏差角为 θm-, 转矩/电流曲线
  图12 偏差角为零, 电阻补偿前后电流曲线
  图13 偏差角为30°, 电阻补偿前后电流曲线
  图14 转速曲线
  图15 磁链轨迹
  表4 平均开关频率
[1] 冯光烁, 周明. 重油航空活塞发动机技术路线分析[J]. 清华大学学报(自然科学版), 2016, 56(10):1114-1121.FENG G S, ZHOU M. Assessment of heavy fuel aircraft piston engine types[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(10):1114-1121. (in Chinese)
[2] BU J G, ZHOU M, LAN X D, et al. Optimization for airgap flux density waveform of flywheel motor using NSGA-2 and kriging model based on MaxPro design[J]. IEEE Transactions on Magnetics, 2017, 53(8):8203607.
[3] BU J G, LAN X D, ZHOU M, et al. Performance optimization of flywheel motor by using NSGA-2 and AKMMP[J]. IEEE Transactions on Magnetics, 2018, 54(6):8103707.
[4] HASAN S M. Hybrid electric vehicle powertrain:On-line parameter estimation of an induction motor drive and torque control of a PM BLDC starter-generator[D]. Ohio:University of Akron, 2008.
[5] CASADEI D, PROFUMO F, SERRA G, et al. FOC and DTC:Two viable schemes for induction motors torque control[J]. IEEE Transactions on Power Electronics, 2002, 17(5):779-787.
[6] TAKAHASHI I, NOGUCHI T. A new quick-response and high-efficiency control strategy of an induction motor[J]. IEEE Transactions on Industry Applications, 1986, IA-22(5):820-827.
[7] DEPENBROCK M. Direct self-control (DSC) of inverter-fed induction machine[J]. IEEE Transactions on Power Electronics, 1988, 3(4):420-429.
[8] ZHONG L, RAHMAN M, HU W Y, et al. Analysis of direct torque control in permanent magnet synchronous motor drives[J]. IEEE Transactions on Power Electronics, 1997, 12(3):528-536.
[9] HU J, WU B. New integration algorithms for estimating motor flux over a wide speed range[J]. IEEE Transactions on Power Electronics, 1998, 13(5):969-977.
[10] SHIN M H, HYUN D S, CHO S B, et al. An improved stator flux estimation for speed sensorless stator flux orientation control of induction motors[J]. IEEE Transactions on Power Electronics, 2000, 15(2):312-318.
[11] HINKKANEN M, LUOMI J. Modified integrator for voltage model flux estimation of induction motors[J]. IEEE Transactions on Industrial Electronics, 2003, 50(4):818-820.
[12] SANGSEFIDI Y, ZIAEINEJAD S, MEHRIZI-SANI A, et al. Estimation of stator resistance in direct torque control synchronous motor drives[J]. IEEE Transactions on Energy Conversion, 2015, 30(2):626-634.
[13] RAHMAN M F, HAQUE M E, TANG L X, et al. Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies[J]. IEEE Transactions on Industrial Electronics, 2004, 51(4):799-809.
[14] HAN S H, CHOI J S, KIM Y S. Sensorless PMSM drive with a sliding mode control based adaptive speed and stator resistance estimator[J]. IEEE Transactions on Magnetics, 2000, 36(5):3588-3591.
[15] RASHED M, MACCONNELL P F A, STRONACH A F, et al. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3):1664-1675.
[16] MOGHADAM M A G, TAHAMI F. Sensorless control of PMSMs with tolerance for delays and stator resistance uncertainties[J]. IEEE Transactions on Power Electronics, 2013, 28(3):1391-1399.
[17] HINKKANEN M, HARNEFORS L, LUOMI J. Reduced-order flux observers with stator-resistance adaptation for speed-sensorless induction motor drives[J]. IEEE Transactions on Power Electronics, 2010, 25(5):1173-1183.
[18] MIR S, ELBULUK M E, ZINGER D S. PI and fuzzy estimators for tuning the stator resistance in direct torque control of induction machines[J]. IEEE Transactions on Power Electronics, 1998, 13(2):279-287.
[19] HOLTZ J, QUAN J T. Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification[J]. IEEE Transactions on Industry Applications, 2002, 38(4):1087-1095.
[20] ZHANG Y C, ZHU J G. Direct torque control of permanent magnet synchronous motor with reduced torque ripple and commutation frequency[J]. IEEE Transactions on Power Electronics, 2011, 26(1):235-248.
[21] 田硕, 李建秋. 柴油ISG并联混合动力系统关键参数设计[J]. 中国公路学报, 2008, 21(3):116-120. TAIN S, LI J Q. Design of key parameters of diesel ISG parallel hybrid power system[J]. China Journal of Highway and Transport, 2008, 21(3):116-120. (in Chinese)
[22] HABETLER T G, PROFUMO F, PASTORELLI M, et al. Direct torque control of induction machines using space vector modulation[J]. IEEE Transactions on Industry Applications, 1992, 28(5):1045-1053.
[23] CASADEI D, SERRA G, TANI K. Implementation of a direct control algorithm for induction motors based on discrete space vector modulation[J]. IEEE Transactions on Power Electronics, 2000, 15(4):769-777.
[24] KANG J K, SUL L K. New direct torque control of induction motor for minimum torque ripple and constant switching frequency[J]. IEEE Transactions on Industry Applications, 1999, 35(5):1076-1082.
[25] SHYU K, LIN J K, PHAM V T, et al. Global minimum torque ripple design for direct torque control of induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9):3148-3156.
[26] REN Y, ZHU Z Q, LIU J M. Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5249-5258.
[27] NIU F, LI K, WANG Y. Direct torque control for permanent-magnet synchronous machines based on duty ratio modulation[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6160-6170.
[28] BEERTEN J, VERVECKKEN J, DRIESEN J. Predictive direct torque control for flux and torque ripple reduction[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1):404-412.
[29] PACAS M, WEBER J. Predictive direct torque control for the PM synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5):1350-1356.
[30] ZHANG Y C, ZHU J G, XU W, et al. A simple method to reduce torque ripple in direct torque-controlled permanent-magnet synchronous motor by using vectors with variable amplitude and angle[J]. IEEE Transactions on Power Electronics, 2011, 58(7):2848-2859.
[1] 冯光烁, 周明. 重油航空活塞发动机技术路线分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1114-1121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn