Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (9): 780-784    DOI: 10.16511/j.cnki.qhdxxb.2018.25.063
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于弹性接触下的微幅滚动隔振机构
管高峰1, 徐登峰2, 朱煜1,2, 喻强1, 李强3
1. 电子科技大学 机械与电气工程学院, 成都 611731;
2. 清华大学 机械工程系, 北京 100084;
3. 武昌理工学院 信息工程学院, 武汉 430223
Rolling-type micro-vibration isolation mechanisms based on elastic contact
GUAN Gaofeng1, XU Dengfeng2, ZHU Yu1,2, YU Qiang1, LI Qiang3
1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
3. School of Engineering Information, Wuchang University of Technology, Wuhan 430223, China
全文: PDF(1893 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 以往将滚动机构用于微幅隔振领域时,其建模通常是基于刚性接触和纯滚动运动的假设,理论与实测固有频率存在较大偏差。为了解决上述问题,该文在弹性接触前提下,考虑接触面弹性变形和微观滑动的影响,根据Lagrange方程建立新的保守系统运动微分方程,进而得到固有频率表达式。以往结果仅包含结构参数,该文表达式还包含了相关材料参数。理论结果表明:接触面之间弹性变形储存的弹性势能是以往研究中固有频率偏差的主要来源;实验结果表明:该文所提出的理论比以往模型更接近实测结果,相较于以往模型70%的偏差,该文所提模型的偏差下降到25%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
管高峰
徐登峰
朱煜
喻强
李强
关键词 微幅隔振滚动机构固有频率弹性接触    
Abstract:Modeling of rolling-type mechanisms for micro-vibration isolation is usually based on the assumption of rigid contact and pure rolling motion that leads to large errors in the measured and theoretical natural frequencies. This study presents a model using elastic contact with elastic deformation and micro-sliding between the contact surfaces that leads to a differential equation for the system motion based on Lagrange's equation to predict the natural frequency. Previous models have only contained structural parameters while this one also includes related material parameters. The analysis predicts natural frequencies that are larger than those in previous models because the elastic potential energy stored in the contact interfaces increases the total potential energy. The theoretical results agree much better with measurements with errors of less than 25% compared to previous models that had errors of 70%.
Key wordsmicro-vibration isolation    rolling-type mechanism    natural frequency    elastic contact
收稿日期: 2018-09-29      出版日期: 2019-08-27
基金资助:国家科技重大专项资助项目(2015ZX02104003);湖北省自然科学基金资助项目(2018CFC889)
通讯作者: 朱煜,教授,E-mail:zhuyu@tsinghua.edu.cn     E-mail: zhuyu@tsinghua.edu.cn
引用本文:   
管高峰, 徐登峰, 朱煜, 喻强, 李强. 基于弹性接触下的微幅滚动隔振机构[J]. 清华大学学报(自然科学版), 2019, 59(9): 780-784.
GUAN Gaofeng, XU Dengfeng, ZHU Yu, YU Qiang, LI Qiang. Rolling-type micro-vibration isolation mechanisms based on elastic contact. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 780-784.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.063  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I9/780
  图1 典型的滚动隔振机构
  图2 弹性变形和微观滑动示意图
  图3 滚动阻力矩的求解示意图
  图4 接触面中黏着区与滑动区的划分
  图5 非平衡位置时机构的几何关系
  图6 (网络版彩图)黏着区与接触区之比分析
  图7 实验装置图
  图8 理论结果与实测结果的对比
[1] LIN T W, HONE C C. Base isolation by free rolling rods under basement[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(3):261-273.
[2] ZHOU Q, LU X L, WANG Q M, et al. Dynamic analysis on structures base-isolated by a ball system with restoring property[J]. Earthquake Engineering & Structural Dynamics, 1998, 27(8):773-791.
[3] JANGID R S, LONDHE Y B. Effectiveness of elliptical rolling rods for base isolation[J]. Journal of Structural Engineering, 1998, 124(4):469-472.
[4] JANGID R S. Stochastic seismic response of structures isolated by rolling rods[J]. Engineering Structures, 2000, 22(8):937-946.
[5] YASUDA M, MINBU S, PAN G, et al. Vibration control unit and vibration control body:US, 7278623B2. 2007-10-09.
[6] KEMENY Z A. Micro vibration isolation device:USA, 6517060B1. 2003-02-11.
[7] BUTTERWORTH J W. Seismic response of a non-concentric rolling isolator system[J]. Advances in Structural Engineering, 2006, 9(1):39-54.
[8] CHUNG L L, YANG C Y, CHEN H M, et al. Dynamic behavior of nonlinear rolling isolation system[J]. Structural Control and Health Monitoring, 2009, 16(1):32-54.
[9] GANG G F, YU Q, SHEN F. Theory and experiments of a rolling-ball mechanism for horizontal vibration isolation[C]//Proceedings of 2015 Joint International Mechanical, Electronic and Information Technology Conference. Chongqing, China:Atlantis Press, 2015:846-852.
[10] HARVEY JR P S, KELLY K C. A review of rolling-type seismic isolation:Historical development and future directions[J]. Engineering Structures, 2016, 125:521-531.
[11] 波波夫. 接触力学与摩擦学的原理及其应用[M]. 李强, 雒建斌, 译. 北京:清华大学出版社, 2011. POPOV V L. Contact mechanics and friction physical principles and applications[M]. LI Q, LUO J B, trans. Beijing:Tsinghua University Press, 2011. (in Chinese)
[12] 金学松. 轮轨蠕滑理论及其试验研究[D]. 成都:西南交通大学, 1999. JIN X S. Study on creep theory of wheel and rail system and its experiment[D]. Chengdu:Southwest Jiaotong University, 1999. (in Chinese)
[13] 张俊杰, 马勇. 双盘式渐开线仪中的轮轨弹性蠕滑问题[J]. 机械传动, 2007, 31(5):6-8. ZHANG J J, MA Y. Elastical creepages between wheel and rail in double-disk involute measuring apparatus[J]. Journal of Mechanical Transmission, 2007, 31(5):6-8. (in Chinese)
[14] HARVEY JR P S, GAVIN H P. The nonholonomic and chaotic nature of a rolling isolation system[J]. Journal of Sound and Vibration, 2013, 332(14):3535-3551.
[15] SUBRAHMANYAN P K. A model approach to precision motion control[D]. Cambridge, Massachusetts, USA:Massachusetts Institute of Technology, 1999.
[1] 于广, 王立平, 吴军, 王冬. 3自由度并联主轴头的动力学建模及动态特性[J]. 清华大学学报(自然科学版), 2017, 57(12): 1317-1323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn