Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (7): 614-622    DOI: 10.16511/j.cnki.qhdxxb.2018.26.029
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
动态故障诊断中的立体因果建模与不确定性推理方法
董春玲1, 赵越2, 张勤1,2
1. 清华大学 计算机科学与技术系, 北京 100084;
2. 清华大学 核能与新能源技术研究院, 北京 100084
Cubic causality modeling and uncertain inference method for dynamic fault diagnosis
DONG Chunling1, ZHAO Yue2, ZHANG Qin1,2
1. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
2. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(4056 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为满足复杂系统的动态、实时和高可靠性的故障诊断需求,克服动态不确定因果图(dynamic uncertain causality graph,DUCG)及其他概率图模型的局限,该文在DUCG理论的基础上扩展其时序因果表达与推理方法,建立了立体DUCG (Cubic DUCG)理论模型。采用动态的手段处理动态问题,以"逐步生长"的立体因果建模取消了时序模型中常见的Markov假设限制,以穿越式因果连接准确地表达动态系统下故障的产生、演变和发展;直观地刻画和处理动态负反馈等复杂故障逻辑因果关系;给出了严谨、高效的动态推理算法。宁德核电站1号机组CPR1000模拟机二回路系统上的故障实验结果表明:Cubic DUCG诊断推理准确、高效,能有效处理负反馈等复杂动态情形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董春玲
赵越
张勤
关键词 故障诊断时序因果建模概率推理动态不确定性动态负反馈    
Abstract:Complex systems need dynamic, real-time, reliable fault diagnostics but current methods have some shortcomings. This paper expands the dynamic uncertain causality graph method (DUCG) for temporal causality modeling and reasoning theory to correct the limits of the DUCG method and other probabilistic graphical models. A Cubic DUCG is developed that is characterized by a true dynamic model of dynamic problems. The cubic causality graph abandons the restriction of the Markov assumption usually used in temporal models with the fault formation, evolution, and development in dynamic systems represented by allowing causal connections to penetrate among any number of time-slices. The negative feedback dynamics is modelled intuitively combined with a reliable dynamic inference algorithm. Fault tests on the secondary loop of Ningde Nuclear Power Plant Unit 1 (CPR1000) simulator show that Cubic DUCG is accurate, efficient, and capable of dealing with the complex dynamics including negative feedback.
Key wordsfault diagnosis    temporal causality modeling    probabilistic reasoning    dynamics and uncertainties    dynamic negative feedback
收稿日期: 2017-12-01      出版日期: 2018-07-15
基金资助:国家自然科学基金资助项目(61402266,71671103);中国博士后科学基金资助项目(2016M590099)
通讯作者: 张勤,教授,E-mail:qinzhang@tsinghua.edu.cn     E-mail: qinzhang@tsinghua.edu.cn
引用本文:   
董春玲, 赵越, 张勤. 动态故障诊断中的立体因果建模与不确定性推理方法[J]. 清华大学学报(自然科学版), 2018, 58(7): 614-622.
DONG Chunling, ZHAO Yue, ZHANG Qin. Cubic causality modeling and uncertain inference method for dynamic fault diagnosis. Journal of Tsinghua University(Science and Technology), 2018, 58(7): 614-622.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.029  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I7/614
  图1 DUCG因果图示例
  图2 DUCG假设5
  图3 时序因果关系中的典型情形
  图4 U 形管破裂故障3个时刻的静态因果图
  图5 图4中t2 和t3 时刻经 DUCG处理后的因果图
  图6 对图3时序因果关系建立的立体因果图
  图7 对图1动态负反馈问题建立的立体因果图
  图8 对图4动态负反馈故障建立的立体因果图
  图9 对图7进行立体因果约简后的 Cubic_DG? (B1,t3)
  图10 低压加热器管道泄漏故障中异常监测信号波动
  图11 (网络版彩图)CubicDUCG在t3、t6、t9 时刻的立体推理因果图
  图12 (网络版彩图)DUCG模型在t3 和t6 时刻的推理因果图局部
[1] HELLER K A, TEH Y W, G R R D, UNIT G. Infinite hierarchical hidden Markov models[J]. Journal of Machine Learning Research, 2009, 5:224-231.
[2] PETROPOULOS A, CHATZIS S P, XANTHOPOULOS S. A hidden Markov model with dependence jumps for predictive modeling of multidimensional time-series[J]. Information Sciences, 2017, 412-413:50-66.
[3] SERIR L, RAMASSO E, ZERHOUNI N. Time-sliced temporal evidential networks:The case of evidential HMM with application to dynamical system analysis[C]//Proceedings of 2011 IEEE Conference on Prognostics and Health Management (PHM). Montreal, Canada:IEEE, 2011:1-10.
[4] SCHOCKAERT S, DE COCK M. Temporal reasoning about fuzzy intervals[J]. Artificial Intelligence, 2008, 172(8-9):1158-1193.
[5] SEZER S, ATALAY A E. Dynamic modeling and fuzzy logic control of vibrations of a railway vehicle for different track irregularities[J]. Simulation Modelling Practice and Theory, 2011, 19(9):1873-1894.
[6] RUAN S, ZHOU Y K, YU F L, et al. Dynamic multiple-fault diagnosis with imperfect tests[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2009, 39(6):1224-1236.
[7] SINGH S, KODALI A, CHOI K, et al. Dynamic multiple fault diagnosis:Mathematical formulations and solution techniques[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 2009, 39(1):160-176.
[8] ARROYO-FIGUEROA G, SUCAR L E. Temporal Bayesian network of events for diagnosis and prediction in dynamic domains[J]. Applied Intelligence, 2005, 23(2):77-86.
[9] GALAN S F, ARROYO-FIGUEROA G, DIEZ F J, SUCAR L E. Comparison of two types of event Bayesian networks:A case study[J]. Applied Artificial Intelligence, 2007, 21(3):185-209.
[10] NODELMAN U. Continuous time Bayesian networks[D]. Palo Alto:Stanford University, 2007.
[11] WINGATE D, GOODMAN N D, ROY D M, et al. The infinite latent events model[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Montreal, Canada:AUAI Press, 2009:607-614.
[12] MURPHY K P. Dynamic Bayesian networks:Representation, inference and learning[D]. Berkeley:University of California, 2002.
[13] CAI B P, LIU Y, XIE M. A dynamic-Bayesian-network-based fault diagnosis methodology considering transient and intermittent faults[J]. IEEE Transactions on Automation Science and Engineering, 2017, 14(1):276-285.
[14] CODETTA-RAITERI D, PORTINALE L. Dynamic Bayesian networks for fault detection, identification, and recovery in autonomous spacecraft[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(1):13-24.
[15] ZHANG Q. Dynamic uncertain causal graph for knowledge representation and reasoning:Discrete DAG cases[J]. Journal of Computer Science and Technology, 2012, 27(1):1-23.
[16] ZHANG Q, DONG C L, CUI Y, et al. Dynamic uncertain causality graph for knowledge representation and probabilistic reasoning:Statistics base, matrix, and application[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(4):645-663.
[17] ZHANG Q, GENG S C. Dynamic uncertain causality graph applied to dynamic fault diagnoses of large and complex systems[J]. IEEE Transactions on Reliability, 2015, 64(3):910-927.
[18] ZHANG Q, ZHANG Z. Dynamic uncertain causality graph applied to dynamic fault diagnoses and predictions with negative feedbacks[J]. IEEE Transactions on Reliability, 2016, 65(2):1030-1044.
[19] DONG C L, ZHAO Y, ZHANG Q. Assessing the influence of an individual event in complex fault spreading network based on dynamic uncertain causality graph[J]. IEEE Transactions on Neural Networks and learning systems, 2016, 27(8):1615-1630.
[20] ZHANG Q. Dynamic uncertain causality graph for knowledge representation and reasoning:continuous variable, uncertain evidence, and failure forecast[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(7):990-1003.
[21] ZHOU Z X, ZHANG Q. Model event/fault trees with dynamic uncertain causality graph for better probabilistic safety assessment[J]. IEEE Transactions on Reliability, 2017, 66(1):178-188.
[22] DONG C L, WANG Y J, ZHANG Q, et al. The methodology of dynamic uncertain causality graph for intelligent diagnosis of vertigo[J]. Computer Methods and Programs in Biomedicine, 2014, 113(1):162-174.
[23] 董春玲, 张勤. 用于不确定性故障诊断的权重逻辑推理算法研究[J]. 自动化学报, 2014, 40(12):2766-2781.DONG C L, ZHANG Q. Research on weighted logical inference for uncertain fault diagnosis[J]. Acta Automatica Sinica, 2014, 40(12):2766-2781.(in Chinese)
[24] ZHANG Q, YAO Q Y. Dynamic uncertain causality graph for knowledge representation and reasoning:Utilization of statistical data and domain knowledge in complex cases[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 99:1-15.
[1] 赵泽恒, 赵劲松. 基于破坏性实验和自动编码器的风机皮带剩余寿命预测[J]. 清华大学学报(自然科学版), 2022, 62(9): 1458-1466.
[2] 宋佳, 石若凌, 郭小红, 刘杨. 基于核极限学习机的飞行器故障诊断方法[J]. 清华大学学报(自然科学版), 2020, 60(10): 795-803.
[3] 吐松江·卡日, 高文胜, 张紫薇, 莫文雄, 王红斌, 崔屹平. 基于支持向量机和遗传算法的变压器故障诊断[J]. 清华大学学报(自然科学版), 2018, 58(7): 623-629.
[4] 赵越, 董春玲, 张勤. 动态不确定因果图用于复杂系统故障诊断[J]. 清华大学学报(自然科学版), 2016, 56(5): 530-537,543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn