Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (8): 752-760    DOI: 10.16511/j.cnki.qhdxxb.2018.26.037
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
复杂非对称岔管数值模拟中湍流模型的影响
陈文创, 张蕊, 张文远, 章晋雄, 张东
中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室, 北京 100038
Effect of turbulence models on the simulation of the flow in a complex asymmetric penstock
CHEN Wenchuang, ZHANG Rui, ZHANG Wenyuan, ZHANG Jinxiong, ZHANG Dong
State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
全文: PDF(5377 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文旨在探究湍流模型对复杂非对称岔管水力特性仿真的结果准确度和计算时间成本的影响。基于Reynolds时均Navier-Stokes(RANS)方程,利用剪切应力传输k-ω(SST k-ω)、标准k-ε(Sk-ε)、可实现k-ε(Rk-ε)、重整化群k-ε(RNG k-ε)和Reynolds应力模型(RSM)共5种不同湍流模型解决方程封闭性问题,深入对比分析基于各湍流模型模拟的流速场、紊动能场、水头损失和时间成本的差异。将计算结果与物理模型试验结果进行比较,发现基于各湍流模型的计算值与试验值偏差和计算效率均随着水流条件的不同而变化。总体而言,基于SST k-ω的模型计算效率较高,基于RSM的结果与试验值偏差较小。SST k-ω和RSM适合应用于求解类似复杂岔管的水力特性问题,可根据所具备的计算资源和对结果准确度要求在二者中选择。而RNG k-ε、Sk-ε和Rk-ε模型均不能较准确模拟岔管分流、汇流形态及引起的水头损失。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈文创
张蕊
张文远
章晋雄
张东
关键词 非对称岔管水力特性湍流模型准确度计算时间    
Abstract:This study analyzes the effects of various turbulence models on the hydrodynamic simulation accuracy and computing time for flow in a complex asymmetric penstock. The turbulence models used here for closure of the Reynolds-averaged Navier-Stokes (RANS) equations were the shear-stress-transport k-ω (SST k-ω), standard k-ε (Sk-ε), realizable k-ε (Rk-ε), renormalization group k-ε (RNG k-ε) and Reynolds stress model (RSM) models. The results show the differences in the velocity, turbulent kinetic energy, and water head loss predictions and the computing times for these five turbulence models. The predictions are compared with experimental data to show that the computing times and the differences between the numerical and experimental results vary with the flow conditions. The RSM results agree best with the experimental results, while the SST k-ω model costs less CPU time. Both the RSM and SST k-ω are found to be appropriate for calculating the hydraulic characteristics of the flow in the complex asymmetric penstock, depending on the available computing resources and the required accuracy. The Sk-ε, Rk-ε and RNG k-ε models all give lower accuracy predictions of the flow distribution, confluence and water head loss.
Key wordsasymmetric penstock    hydraulic characteristics    turbulence models    accuracy    computing time
收稿日期: 2018-04-08      出版日期: 2018-08-15
基金资助:国家重点研发计划项目(2016YFC0401706);中国水利水电科学研究院科研专项(HY0145B422016,HY0145C102017)
引用本文:   
陈文创, 张蕊, 张文远, 章晋雄, 张东. 复杂非对称岔管数值模拟中湍流模型的影响[J]. 清华大学学报(自然科学版), 2018, 58(8): 752-760.
CHEN Wenchuang, ZHANG Rui, ZHANG Wenyuan, ZHANG Jinxiong, ZHANG Dong. Effect of turbulence models on the simulation of the flow in a complex asymmetric penstock. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 752-760.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.037  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I8/752
  表1 岔管水力特性的数值模拟研究概况
  图1 非对称卜型三分支岔管
  表2 岔管水流条件
  图2 ei 随Ni 的变化
  图3 岔管分岔处中心剖面网格
  图4 三机发电,V=10m/s时,ζi 和tc 随 Ne 的变化
  图5 (网络版彩图)三机发电,V=10m/s时, 岔管中心剖面流速场
  图6 (网络版彩图)三机发电,V=10m/s时, 岔管中心剖面紊动能场
  图7 (网络版彩图)三机抽水,V=10m/s时, 岔管中心剖面流速场
  图8 (网络版彩图)三机抽水,V=10m/s时, 岔管中心剖面紊动能场
  表3 V=10m/s, 典型水流条件下, 基于5种不同湍流模型的ζi 计算值与试验值的对比
  表4 V=10m/s, 典型水流条件下, 基于5种不同湍流模型的t
  表5 V=10m/s, 不同水流条件下, 基于SSTkGω 和 RSM 的ζi 计算值与试验值的对比
[1] ADAMS K, WUTZKE C A, ARNOLD K, et al. 2017 hydropower status report[R]. London:International Hydropower Association, 2017.
[2] 苏凯, 李聪安, 伍鹤皋, 等. 水电站月牙肋钢岔管研究进展综述[J]. 水利学报, 2017, 48(8):968-976.SU K, LI C A, WU H G, et al. Review of the crescent-rib steel bifurcation of hydropower station[J]. Journal of Hydraulic Engineering, 2017, 48(8):968-976. (in Chinese)
[3] 李玲, 李玉梁, 黄继汤, 等. 三岔管内水流流动的数值模拟与实验研究[J]. 水利学报, 2001, 32(3):49-53.LI L, LI Y L, HUANG J T, et al. Numerical simulation and experimental study on water flow in Y-type tube[J]. Journal of Hydraulic Engineering, 2001, 32(3):49-53. (in Chinese)
[4] 刘沛清, 屈秋林, 王志国, 等. 内加强月牙肋三岔管水力特性数值模拟[J]. 水利学报, 2004, 35(3):42-46.LIU P Q, QU Q L, WANG Z G, et al. Numerical simulation on hydrodynamic characteristics of bifurcation pipe with internal crescent rib[J]. Journal of Hydraulic Engineering, 2004, 35(3):42-46. (in Chinese)
[5] 高学平, 张尚华, 韩延成, 等. 引水岔管水力特性三维数值计算[J]. 中国农村水利水电, 2005(12):93-97.GAO X P, ZHANG S H, HAN Y C, et al. 3-D numerical simulation of hydraulic characteristics in water diversion bifurcated pipes[J]. China Rural Water & Hydropower, 2005(12):93-97. (in Chinese)
[6] 王志国, 陈永兴. 西龙池抽水蓄能电站内加强月牙肋岔管水力特性研究[J]. 水力发电学报, 2007, 26(1):42-47.WANG Z G, CHEN Y X. Study on hydraulic characteristic of Escher-Wyss wyepiece of Xilongchi pumped storage power station[J]. Journal of Hydroelectric Engineering, 2007, 26(1):42-47. (in Chinese)
[7] 毛根海, 章军军, 程伟平, 等. 卜型岔管水力模型试验及三维数值计算研究[J]. 水力发电学报, 2005, 24(2):16-20, 51.MAO G H, ZHANG J J, CHENG W P, et al. Experimental study and 3-D numerical simulation on water flow in Y-type pipe[J]. Journal of Hydroelectric Engineering, 2005, 24(2):16-20, 51. (in Chinese)
[8] 戎贵文, 魏文礼, 刘玉玲. 分岔管道三维湍流水力特性数值模拟[J]. 水利学报, 2010, 41(4):398-405.RONG G W, WEI W L, LIU Y L. 3-D numerical simulation for hydraulic characteristics of turbulent flow in bifurcated duct[J]. Journal of Hydraulic Engineering, 2010, 41(4):398-405. (in Chinese)
[9] 董壮, 罗龙洪, 郑福寿. 岔管流动的数值模拟[J]. 河海大学学报(自然科学版), 2007, 35(1):14-17.DONG Z, LUO L H, ZHENG F S. Numerical simulation of flow in bifurcated pipes[J]. Journal of Hohai University (Natural Sciences), 2007, 35(1):14-17. (in Chinese)
[10] 陈文兵, 孙宏健, 齐央. 非对称三岔管水力特性数值计算与流态分析[J]. 水电能源科学, 2008, 26(5):71-74.CHEN W B, SUN H J, QI Y. Numerical calculation of hydraulic characteristics and analysis of flow state in asymmetric branch pipe[J]. Water Resources & Power, 2008, 26(5):71-74. (in Chinese)
[11] 郑源, 严继松, 张占, 等. 抽水蓄能电站引水岔管水力特性数值模拟[J]. 排灌机械, 2008, 26(2):45-48.ZHENG Y, YAN J S, ZHANG Z, et al. Numerical simulation on hydraulic characteristics in water diversion bifurcated pipes of pumped storage power station[J]. Drainage & Irrigation Machinery, 2008, 26(2):45-48. (in Chinese)
[12] 梁春光, 程永光. 基于CFD的抽水蓄能电站岔管水力优化[J]. 水力发电学报, 2010, 29(3):84-91.LIANG C G, CHENG Y G. Hydraulic optimization of pipe bifurcation of pumped-storage power station by CFD method[J]. Journal of Hydroelectric Engineering, 2010, 29(3):84-91. (in Chinese)
[13] 董家, 严根华, 杨兴义, 等. 月牙肋岔管群水力损失模型试验与数值模拟结果的比较[J]. 水电能源科学, 2016, 34(10):60-64.DONG J, YAN G H, YANG X Y, et al. Experimental research and numerical simulation comparison of unsymmetrical Y-type penstock for hydraulic loss[J]. Water Resources & Power, 2016, 34(10):60-64. (in Chinese)
[14] LAUNDER B E, SPALDING D B. Lectures in mathematical models of turbulence[M]. London:Academic Press, 1972.
[15] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-εeddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
[16] YAKHOT V, ORSZAG S A. Renormalization group analysis of turbulence I:Basic theory[J]. Journal of Scientific Computing, 1986, 1(1):3-51.
[17] MENTER F, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[J]. Turbulence, Heat and Mass Transfer, 2003, 4(1):625-632.
[18] LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3):537-566.
[19] 张文远. 某抽水蓄能电站钢筋混凝土高压岔管水力学特性研究物理模型试验[R]. 北京:中国水利水电科学研究院, 2017.ZHANG W Y. Experimental study on the hydraulic characteristics of a concrete penstock in a pumped-storage hydroelectric plant[R]. Beijing:China Institute of Water Resources and Hydropower Research, 2017. (in Chinese)
[20] 李玉梁, 李玲, 陈嘉范, 等. 抽水蓄能电站对称岔管的流动阻力特性[J]. 清华大学学报(自然科学版), 2003, 43(2):270-272, 280.LI Y L, LI L, CHEN J F, et al. Flow resistance characteristics of symmetric fork tube used in a storage-pumped hydroelectric plant[J]. Journal of Tsinghua University (Science and Technology), 2003, 43(2):270-272, 280. (in Chinese)
[21] 李玲, 陆豪, 陈嘉范. 抽水蓄能电站尾水岔管水流运动及阻力特性试验研究[J]. 水力发电学报, 2008, 27(3):101-104, 109.LI L, LU H, CHEN J F. Experimental research on current resistant characteristics of tail water fork tube in the pumped-storage hydroelectric plant[J]. Journal of Hydroelectric Engineering, 2008, 27(3):101-104, 109. (in Chinese)
[1] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn