Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (2): 96-102    DOI: 10.16511/j.cnki.qhdxxb.2019.21.003
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于Gauss调制脉冲模型的超声信号提取算法
周海鹏, 韩赞东, 都东, 陈以方
清华大学 机械工程系, 摩擦学国家重点实验室, 北京 100084
Ultrasonic signal extraction algorithm based on a Gaussian modulated pulse model
ZHOU Haipeng, HAN Zandong, DU Dong, CHEN Yifang
State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(5089 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 奥氏体材料的厚壁焊缝是焊缝超声检测的难点,由于焊缝组织晶粒粗大,超声散射与衰减严重,检测信号中含有大量噪声信号,因此需要通过信号处理提高其信噪比。该文提出了一种基于Gauss调制脉冲(GMP)模型的超声检测信号提取算法,使用参考信号对原始信号进行互相关滤波,并基于GMP模型对滤波结果进行信号分解,由信号特征直接估计各信号分量的控制参数。先后设计了仿真实验及超声检测实验以验证算法性能,结果表明:该算法可以有效提取超声检测信号中的缺陷信息,为厚壁焊缝缺陷信号分析、焊缝检测算法优化等相关应用奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周海鹏
韩赞东
都东
陈以方
关键词 超声信号提取厚壁焊缝Gauss调制脉冲互相关滤波    
Abstract:Austenitic thick-wall welds are difficult to evaluate using ultrasonic testing because the ultrasonic waves are scattered and attenuated by the coarse grain microstructure. The ultrasonic signals then contain much noise with signal processing needed to reduce the noise. This paper presents an ultrasonic signal extraction algorithm based on the Gaussian modulated pulse (GMP) model to improve the signal processing. The original signals are filtered by a cross-correlation method and then the filtered signals are decomposed to acquire the control parameters for each component based on the GMP model and the signal features. Simulations and experiments verify the algorithm's performance. This algorithm can extract useful information about defects from ultrasonic signals as the foundation for further analyses of thick-wall welds for defect information analyses and inspection method optimization.
Key wordsultrasonic signal extraction    thick-wall welds    Gaussian modulated pulse    cross-correlation filtering
收稿日期: 2018-09-11      出版日期: 2019-02-16
基金资助:国家自然科学基金资助项目(51375258)
通讯作者: 韩赞东,副教授,E-mail:hanzd@tsinghua.edu.cn     E-mail: hanzd@tsinghua.edu.cn
引用本文:   
周海鹏, 韩赞东, 都东, 陈以方. 基于Gauss调制脉冲模型的超声信号提取算法[J]. 清华大学学报(自然科学版), 2019, 59(2): 96-102.
ZHOU Haipeng, HAN Zandong, DU Dong, CHEN Yifang. Ultrasonic signal extraction algorithm based on a Gaussian modulated pulse model. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 96-102.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.003  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I2/96
  图1 (网络版彩图)超声检测典型信号
  图2 GMP的时域及频域特征
  图3 (网络版彩图)包含噪声的典型仿真信号
  图4 (网络版彩图)带宽因子对滤波效果的影响
  图5 (网络版彩图)典型仿真信号的信号提取效果
  表1 仿真实验中典型信号提取算法性能汇总
  表2 仿真实验中随机信号提取算法性能汇总
  图6 厚壁焊缝 FMC检测实验方案示意图
  图7 (网络版彩图)厚壁焊缝检测的信号提取效果
  图8 FMC信号矩阵的信号提取效果
[1] COHEN L. Time-frequency distributions-a review[J]. Proceedings of the IEEE, 1989, 77(7):941-981.
[2] 高天, 陈怀玉, 曹丽. 一种基于超声缺陷回波分析的小波降噪方法[J]. 仪器仪表学报, 2015, 36 Supplement:73-79.GAO T, CHEN H Y, CAO L. A wavelet denoising method based on ultrasonic defect echo analysis[J]. Chinese Journal of Scientific Instrument, 2015, 36 Supplement:73-79. (in Chinese)
[3] 陶亮. Gabor展开与变换研究综述[J]. 安徽大学学报(自然科学版), 2017, 41(2):2-13.TAO L. Review on Gabor expansion and transform[J]. Journal of Anhui University (Natural Science Edition), 2017, 41(2):2-13. (in Chinese)
[4] 王柄方. 厚壁焊缝超声检测方法研究[D]. 北京:清华大学, 2010.WANG B F. Study on ultrasonic testing method for thick-wall welds[D]. Beijing:Tsinghua University, 2010. (in Chinese)
[5] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995.
[6] WU Z, HUANG N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, Theory and Applications, 2009, 1(1):1-41.
[7] MALLAT S G, ZHANG Z F. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[8] 周健鹏. 稀疏分解理论在超声无损检测信号处理中的应用[D]. 鞍山:辽宁科技大学, 2016.ZHOU J P. Application of sparse decomposition theory to ultrasonic nondestructive testing signal processing[D]. Anshan:University of Science and Technology Liaoning, 2016. (in Chinese)
[9] 李迎雪. 基于稀疏表示的管道缺陷超声复合阵列成像研究[D]. 镇江:江苏大学, 2017.LI Y X. Research on sparse-representation based ultrasonic composite array imaging for pipeline defect[D]. Zhenjiang:Jiangsu University, 2017. (in Chinese)
[10] 卢振坤, 杨萃, 王金炜. 基于Gabor变换的超声回波信号时频估计[J]. 电子与信息学报, 2013, 35(3):652-657.LU Z K, YANG C, WANG J W. Gabor transform based time-frequency estimation of ultrasonic echo signal[J]. Journal of Electronics & Information Technology, 2013, 35(3):652-657. (in Chinese)
[11] MANN S, HAYKIN S. The Chirplet transform:Physical considerations[J]. IEEE Transactions on Signal Processing, 1995, 43(11):2745-2761.
[12] 郭剑峰, 刘金朝, 王卫东. 基于变参数域和短时高斯线性调频基的自适应信号分解算法[J]. 振动与冲击, 2015, 34(12):133-139.GUO J F, LIU J C, WANG W D. Variable parameters domain and short time adaptive Gaussian chirplet signal decomposition algorithm[J]. Journal of vibration and shock, 2015, 34(12):133-139. (in Chinese)
[13] ZHOU H P, HAN Z D, DU D, et al. A combined marching and minimizing ray-tracing algorithm developed for ultrasonic array imaging of austenitic welds[J]. NDT & E International, 2018, 95:45-56.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn