Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (9): 737-743    DOI: 10.16511/j.cnki.qhdxxb.2019.21.025
  电子工程 本期目录 | 过刊浏览 | 高级检索 |
用于量子安全直接通信的空间耦合LDPC-BCH码
王平1, 孙臻1, 殷柳国2,3,4, 陆建华1,2
1. 清华大学 电子工程系, 北京 100084;
2. 清华大学 信息科学技术学院, 北京 100084;
3. 北京信息科学与技术国家研究中心, 北京 100084;
4. 深圳清华大学研究院 EDA重点实验室, 深圳 518057
Spatially coupled LDPC-BCH codes in quantum secure direct communications
WANG Ping1, SUN Zhen1, YIN Liuguo2,3,4, LU Jianhua1,2
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. School of Information Science and Technology, Tsinghua University, Beijing 100084, China;
3. Beijing National Research Center for Information Science and Technology, Beijing, 100084, China;
4. Key Laboratory of EDA, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
全文: PDF(4068 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 受光源、光器件和光纤损耗影响,量子安全直接通信系统的信息传输面临删除概率极大、接收概率极低的难题。为保证量子安全直接通信系统信息传输的可靠性,该文提出了基于空间耦合LDPC-BCH码的信道补偿方案,解决了极低码率码字构造和逼近Shannon限实用码字设计2方面的问题。将多个相同的分组LDPC-BCH码通过边连接的方式耦合起来构造得到了空间耦合LDPC-BCH码。建立了空间耦合LDPC-BCH码集的外信息转移函数,并基于外信息转移函数分析了码集的译码门限值。仿真结果表明:与分组LDPC-BCH码相比,空间耦合LDPC-BCH码的译码门限更接近Shannon限,误比特率更低。在信道接收概率为0.4%时,采用传输效率为0.001的空间耦合LDPC-BCH码信道补偿方案,系统误比特率低于10-6
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王平
孙臻
殷柳国
陆建华
关键词 量子安全直接通信信道编码空间耦合迭代译码    
Abstract:Quantum secure direct communication systems are limited by high erasure probabilities and low receiving probabilities due to the high light source losses in the optical elements and optical fibers. A channel mitigation method based on spatially coupled LDPC-BCH codes is presented here to ensure reliable information transformations in quantum secure direct communication systems to resolve the problems of low-rate and Shannon limit-approaching code designs. Spatially coupled LDPC-BCH codes are constructed by coupling multiple identical block LDPC-BCH codes with edge spreading. The extrinsic information transfer functions of the spatially coupled LDPC-BCH code are analyzed to derive the decoding thresholds for the code ensembles. Simulations show that the spatially coupled LDPC-BCH codes have decoding thresholds closer to the Shannon limit with lower bit error rates than block LDPC-BCH codes. The spatially coupled LDPC-BCH code channel mitigation scheme has a transmitting efficiency of 0.001 and a bit error rate less than 10-6 when the channel receiving probability is set at 0.4%.
Key wordsquantum secure direct communication    channel coding    spatially coupling    iterative decoding
收稿日期: 2019-03-21      出版日期: 2019-08-27
基金资助:国家自然科学基金重点项目(91538203);国家自然科学基金面上项目(61871257);深圳市战略新兴产业发展专项资金项目(JCYJ20170307145820484);总装备部和教育部联合研究基金项目(6141A02033322)
通讯作者: 殷柳国,研究员,E-mail:yinlg@tsinghua.edu.cn     E-mail: yinlg@tsinghua.edu.cn
引用本文:   
王平, 孙臻, 殷柳国, 陆建华. 用于量子安全直接通信的空间耦合LDPC-BCH码[J]. 清华大学学报(自然科学版), 2019, 59(9): 737-743.
WANG Ping, SUN Zhen, YIN Liuguo, LU Jianhua. Spatially coupled LDPC-BCH codes in quantum secure direct communications. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 737-743.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.025  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I9/737
  图1 QSDC系统信息传输模型
  图2 (3,6)规则 LDPC-BCH 码集的原模图
  图3 (3,6,L,2)空间耦合 LDPC-BCH 码集的原模图
  图4 用于估算eg,h的子矩阵Sg,h示意图
  图5 空间耦合 LDPC-BCH 码的译码门限值
  图6 基于空间耦合 LDPC-BCH 码的信道 补偿方案误比特率性能
[1] LONG G L, LIU X S. Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Physical Review A, 2002, 65(032302):1-3.
[2] NIU P H, ZHOU Z R, LIN Z S, et al. Measurement-device-independent quantum communication without encryption[J]. Science Bulletin, 2018, 63(20), 1345-1350.
[3] HU J Y, YU B, JING M Y, et al. Experimental quantum secure direct communication with single photons[J]. Light:Science & Applications, 2016, 5(e16144):1-5.
[4] ZHANG W, DING D S, SHENG Y B, et al. Quantum secure direct communication with quantum memory[J]. Physical Review Letters, 2017, 118(220501):1-6.
[5] QI R, SUN Z, LIN Z, et al. Implementation and security analysis of practical quantum secure direct communication[J]. Light:Science & Applications, 2018, 8(22):1-8.
[6] LI Q, QU X, YIN L, et al. Generalized low-density parity-check coding scheme with partial-band jamming[J]. Tsinghua Science and Technology, 2014, 19(2):203-210.
[7] KUDEKAR S, RICHARDSON T J, URBANKE R L. Threshold saturation via spatial coupling:Why convolutional LDPC ensembles perform so well over the BEC?[J]. IEEE Transaction on Information Theory, 57(2):803-834.
[8] SCHMALEN L, AREF V, CHO J, et al. Spatially coupled soft-decision error correction for future lightwave systems[J]. Journal of Lightwave Technology, 2015, 33(5):1109-1116.
[9] JOHNSON S, LECHNER G. Spatially coupled repeat- accumulate codes[J]. IEEE Communications Letters, 2013, 17(2):373-376.
[10] MOLOUDI S, LENTMAIER M, AMAT A G I. Spatially coupled turbo-like codes[J]. IEEE Transactions on Information Theory, 2017, 63(10):6199-6215.
[11] THORPE J. Low-density parity-check (LDPC) codes constructed from protographs[J]. The Interplanetary Network Progress Report, 2003, 42(154):1-7.
[12] MITCHELL D G M, LENTMAIER M, COSTELLO D J. Spatially coupled LDPC codes constructed from protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9):4866-4889.
[13] 李琪, 曲欣茹, 殷柳国, 等. 基于蝶形流程图的分组码最大后验概率软判决译码方法[J]. 清华大学学报(自然科学版), 2014(12):1598-1603.LI Q, QU X R, YIN L G, et al. Butterfly-flow-graph based soft APP scheme for decoding block channel codes[J]. Journal of Tsinghua University (Science and Technology), 2014(12):1598-1603. (in Chinese).
[14] LENTMAIER M, TAVARES M B S, FETTWEIS G P. Exact erasure channel density evolution for protograph-based generalized LDPC codes[C]. IEEE International Symposium on Information Theory. Seoul, Korea:IEEE, 2009:566-570.
[15] PAOLINI E, FOSSORIER M P C, CHIANI M. Generalized and doubly generalized LDPC codes with random component codes for the binary erasure channel[J]. IEEE Transactions on Information Theory, 2010, 56(4):1651-1672.
[16] ASHIKHMIN A, KRAMER G, BRINK S. Extrinsic information transfer functions:Model and erasure channel properties[J]. IEEE Transactions on Information Theory, 2004, 50(11):2657-2673.
[17] IYENGAR A R, PAPALEO M, SIEGEL P H, et al. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels[J]. IEEE Transactions on Information Theory, 2012, 58(4):2303-2320.
[1] 蔺萌, 李云洲, 许希斌, 王京. 基于干扰消除的BICM-FBMC-ID接收机设计[J]. 清华大学学报(自然科学版), 2017, 57(8): 872-877,883.
[2] 李航, 高镇, 赵明, 王京. 适于OBP卫星的Turbo码自适应部分迭代译码[J]. 清华大学学报(自然科学版), 2016, 56(9): 925-929.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn