Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (1): 89-94    DOI: 10.16511/j.cnki.qhdxxb.2019.21.029
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
核级管端法兰面在线堆焊修复的残余应力
鲁立1,2,5, 胡梦佳1, 蔡志鹏1,2,3, 李克俭1, 吴瑶4, 潘际銮1
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 摩擦学国家重点实验室, 北京 100084;
3. 清华大学 先进核能技术协同创新中心, 北京 100084;
4. 清华大学 天津高端装备研究院, 天津 300304;
5. 苏州热工研究院有限公司, 苏州 215004
Residual stresses after on-line surfacing welding repairs on the flange surface of a nuclear grade pipe end
LU Li1,2,5, HU Mengjia1, CAI Zhipeng1,2,3, LI Kejian1, WU Yao4, PAN Jiluan1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
3. Collaborative Innovation Center of Advanced Nuclear Energy Technology, Beijing 100084, China;
4. Tsinghua University Research Institute for Advanced Equipment, Tianjin 300304, China;
5. Suzhou Nuclear Power Research Institute, Suzhou 215004, China
全文: PDF(4766 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用数值模拟的方法研究了某一核级管端法兰面在线堆焊修复过程中的焊接顺序及堆焊厚度对残余应力和变形的影响。模拟结果表明,由于法兰内外侧厚度不同以及内外壁连接管的刚性差异,采用从内至外的焊接顺序可以得到整体较小的焊接残余应力和变形。当堆焊厚度为20 mm时,外壁管道焊缝处的轴向残余应力接近材料的屈服强度;当堆焊厚度不超过15 mm时,外壁管道焊缝处的残余应力远低于屈服强度。采用优化的焊接工艺制作了等比例模拟件,并采用X射线衍射法测试模拟件的残余应力,计算结果与测试结果吻合良好,进一步验证了数值模型及模拟分析结果的可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鲁立
胡梦佳
蔡志鹏
李克俭
吴瑶
潘际銮
关键词 法兰面堆焊修复焊接残余应力数值模拟    
Abstract:Numerical simulations were used to study the effect of welding sequence and surfacing thickness on the residual stresses and deformation after on-line surfacing welding repair of the flange surface of a nuclear grade pipe. The simulations show that the welding sequence from the inside to the outside wall leads to smaller residual stresses and deformation due to the different thicknesses of the inside and outside walls of the flange and the rigidity differences between the connecting pipes. With a 20 mm surfacing thickness, the residual axial stress at the welding seam of the outer pipe wall is close to the material yield strength. With surfacing thicknesses no more than 15 mm thick, the residual stress at the welding seam of the outer pipe wall is far lower than the yield strength. A sample specimen was made using the optimized welding process with the residual stress then measured using X-ray diffraction. The predicted stresses agree well with the measured data to verify the simulation results.
Key wordsflange face    surfacing welding repair    welding residual stress    numerical simulation
收稿日期: 2019-06-03      出版日期: 2020-01-03
基金资助:蔡志鹏(1974-),研究员。E-mail:czpdme@tsinghua.edu.cn
引用本文:   
鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
LU Li, HU Mengjia, CAI Zhipeng, LI Kejian, WU Yao, PAN Jiluan. Residual stresses after on-line surfacing welding repairs on the flange surface of a nuclear grade pipe end. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 89-94.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.029  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I1/89
  表1 焊接顺序对最大轴向残余应力及位移的影响
  图1 法兰结构及堆焊有限元模型
  图2 Z2CN18.10 不锈钢及316L 不锈钢材料参数
  图3 焊接顺序计算模型
  图4 ( 网络版彩图) 焊接顺序对轴向残余应力的影响
  图5 ( 网络版彩图) 焊接顺序对轴向变形的影响
  图6 (网络版彩图)不同堆焊层厚度的轴向残余应力分布云图
  图7 不同堆焊层厚度下管道外壁轴向残余应力分布
  图8 模拟件残余应力测试及数值计算模型
  图9 ( 网络版彩图) 模拟件堆焊后残余应力分布
  图10 模拟件应力测量结果与计算结果对比
[1] SHALABY H M. Failure investigation of 321 stainless steel pipe to flange weld joint[J]. Engineering Failure Analysis, 2017, 80:290-298.
[2] COULES H E, SMITH D J. Measurement of the residual stresses in a PWR control rod drive mechanism nozzle[J]. Nuclear Engineering & Design, 2018, 333:16-24.
[3] ALORAIER A, AL-MAZROUEE A, PRICE J W H, et al. Weld repair practices without post weld heat treatment for ferritic alloys and their consequences on residual stresses:A review[J]. International Journal of Pressure Vessels & Piping, 2010, 87(4):127-133.
[4] SATTARI-FAR I, JAVADI Y. Influence of welding sequence on welding distortions in pipes[J]. International Journal of Pressure Vessels & Piping, 2008, 85(4):265-274.
[5] DENG D, MURAKAWA H, LIANG W. Numerical simulation of welding distortion in large structures[J]. Computer Methods in Applied Mechanics & Engineering, 2007, 196(45):4613-4627.
[6] JIANG W, LIU Z, GONG J M, et al. Numerical simulation to study the effect of repair width on residual stresses of a stainless steel clad plate[J]. International Journal of Pressure Vessels & Piping, 2010, 87(8):457-463.
[7] SCHAUPP T, SCHOEPFER D, KROMM A, et al. Welding residual stresses in 960 MPa grade QT and TMCP high-strength steels[J]. Journal of Manufacturing Processes, 2017, 27:226-232.
[8] DONG P, HONG J K, BOUCHARD P J. Analysis of residual stresses at weld repairs[J]. International Journal of Pressure Vessels & Piping, 2005, 82(4):258-269.
[9] ZHANG T, BRUST B, WILKOWSKI G, et al. Weld residual stress analysis and the effects of structural overlay on various nuclear power plant nozzles[J]. Journal of Pressure Vessel Technology, 2012, 134(6):061205.
[10] SONG T K, KIM Y B, KIM Y J, et al. Prediction of welding residual stress profile in dissimilar metal nozzle butt weld of nuclear power plant[J]. Procedia Materials Science, 2014, 3:784-789.
[11] WOO W, EM V, HUBBARD C R, et al. Residual stress determination in a dissimilar weld overlay pipe by neutron diffraction[J]. Materials Science & Engineering A, 2011, 528(27):8021-8027.
[12] LIU R F, HUANG C C. Welding residual stress analysis for weld overlay on a BWR feedwater nozzle[J]. Nuclear Engineering & Design, 2013, 256:291-303.
[13] 任维嘉, 吴爱萍, 赵海燕, 等. 大型电机转子焊接残余应力的数值分析[J]. 焊接学报, 2002, 23(4):92-96. REN J W, WU A P, ZHAO H Y, et al. Finite element method analysis on welding residual stresses of large electromotor rotor[J]. Transactions of the China Welding Institution, 2002, 23(4):92-96. (in Chinese)
[1] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[2] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[3] 闫慧慧, 周伯豪, 李豪, 张煜洲, 兰旭东. 基于ANSYS的涡轴发动机压气机设计[J]. 清华大学学报(自然科学版), 2022, 62(3): 549-554,580.
[4] 张旨晗, 刘辉, 吕振雷, 侯岩松, 孙立风, 王石, 吴朝霞, 刘亚强. 大动物SPECT系统设计与数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(12): 1875-1883.
[5] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[6] 陈猛, 陈昭, 刘荣正, 刘兵, 邵友林, 唐亚平, 刘马林. 流化床-化学气相沉积颗粒包覆过程数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(10): 1645-1659.
[7] 沈锴欣, 贺治超, 翁文国. 化工多米诺事故中物理效应间的耦合作用[J]. 清华大学学报(自然科学版), 2022, 62(10): 1559-1570.
[8] 李东杰, 周伯豪, 梁骞, 兰旭东. 微型涡喷发动机燃烧室优化设计[J]. 清华大学学报(自然科学版), 2021, 61(10): 1212-1220.
[9] 张寒, 黄泽宇, 张国君, 欧阳葆华, 吴学民, 郑丽丽. 下料方式和流量分配对D4合成SiO2的影响[J]. 清华大学学报(自然科学版), 2020, 60(3): 233-238.
[10] 罗圣峰,谢启源,张辉,王光健. 引入熔融糊状区的PMMA逆流火蔓延数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(12): 1039-1046.
[11] 章若茵, 吴保生. 牛栏江滇池补水工程取水防沙措施的模拟研究[J]. 清华大学学报(自然科学版), 2019, 59(5): 354-363.
[12] 董明晔, 赵玥, 贾金龙, 李权, 王福德, 吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830.
[13] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[14] 张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
[15] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn