Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (1): 82-88    DOI: 10.16511/j.cnki.qhdxxb.2019.21.030
  精密仪器与机械学 本期目录 | 过刊浏览 | 高级检索 |
MIMU在不同情况下的可观测性分析
邢海峰1, 陈志勇1, 张新喜2, 郭美凤1
1. 清华大学 精密仪器系, 北京 100084;
2. 陆军装甲兵学院 兵器与控制系, 北京 100072
Observability analysis of MIMU devices in different conditions
XING Haifeng1, CHEN Zhiyong1, ZHANG Xinxi2, GUO Meifeng1
1. Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
2. Weapons and Control Department, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(5867 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 基于微机电系统(MEMS)技术的微惯性测量单元(MIMU)在体积、重量、功耗都具有显著优势,但是其较大的惯性器件误差限制了其应用范围。通过引入旋转调制技术抑制其影响,使得MIMU能够实现寻北应用,目前这方面已经得到比较多的研究。但是不足之处在于缺乏对MIMU的可观测性分析,而状态是否可观测与Kalman滤波能否准确估计误差状态量是紧密联系的。该文针对MIMU在静止、多位置、连续旋转3种情况下,基于实测数据用Kalman滤波分析其可观测性。结果表明:静止情况下MIMU的航向姿态角误差很大,无法自对准;通过绕航向轴及俯仰轴旋转的多位置方案,可以使得MIMU的误差状态量完全可观测;连续旋转情况下,Kalman滤波可以在较短时间内估计出航向角及天向加速度计零偏,并在一段时间后估计出方位陀螺漂移,但是无法准确估计出水平方向的陀螺漂移及加速度计零偏,不过寻北算法可以估计出水平方向的惯性器件常值误差。该研究结果为提高MIMU自对准精度以及评估其性能提供了途径和理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邢海峰
陈志勇
张新喜
郭美凤
关键词 微惯性测量单元可观测性Kalman滤波旋转调制    
Abstract:Micro inertial measurement units (MIMU) based on micro-electro-mechanical-system (MEMS) designs are very small and light with low power consumption, but they have large inertial errors that limit applications. The rotation modulation technique was used to reduce the influence of these errors so that the MIMU systems can more accurately identify the northern direction. However, there have been few observability analyses of MIMU devices with the observability closely related to whether the Kalman filtering can accurately estimate the error state. This study analyzes the MIMU observability using Kalman filtering based on measured data for stationary, multi-position and continuous rotation conditions. The results show that the heading angle error in the stationary condition is quite large and the device cannot be self-aligned. A multi-positioning scheme with rotation around the heading axis and the pitch axis makes the MIMU error state completely observable. With continuous rotation, the Kalman filtering can quickly estimate the heading angle and the azimuth accelerometer bias with the azimuth gyro drift estimated after a short period of time. The gyro drift and the accelerometer bias in the horizontal plane cannot be accurately estimated using Kalman filtering, but they can be measured by the north-seeking algorithm. The research provides a theoretical basis for improving the self-alignment accuracy of MIMU devices and evaluating their performance.
Key wordsmicro inertial measurement unit (MIMU)    observability    Kalman filtering    rotation modulation technique (RMT)
收稿日期: 2019-05-28      出版日期: 2020-01-03
基金资助:郭美凤,副教授,E-mail:guomf@tsinghua.edu.cn
引用本文:   
邢海峰, 陈志勇, 张新喜, 郭美凤. MIMU在不同情况下的可观测性分析[J]. 清华大学学报(自然科学版), 2020, 60(1): 82-88.
XING Haifeng, CHEN Zhiyong, ZHANG Xinxi, GUO Meifeng. Observability analysis of MIMU devices in different conditions. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 82-88.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.030  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I1/82
  表1 FOG SINS 和 HG4930 的 Allan 方差性能
  图1 ( 网络版彩图) 静止情况下惯性 器件误差的收敛情况
  图2 采集数据的实验环境
  图3 ( 网络版彩图) 静止状态下FOG SINS 滤波前后的数据
  图4 ( 网络版彩图) 静止状态下 MIMU 滤波前后的数据
  图5 Kalman 滤波估计的航向角
  图6 ( 网络版彩图) MIMU 多位置方案的结果
  图7 连续旋转下kalman 滤波估计的航向角
  图8 ( 网络版彩图) 连续旋转下kalman 滤波估计的陀螺漂移及加速度计零偏的情况
[1] ZHANG C H, CHEN J B, XU J H, et al. Application of correlation detection in rotation-modulation north-seeking based on MEMS gyroscope[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference, Yantai, China:Chinese Society of Aeronautics and Astronautics (CSAA), 2014:441-445.
[2] JOHNSON B, CHRIST K, ENDEAN D, et al. Tuning fork MEMS gyroscope for precision northfinding[C]//Proceedings of the 2015 DGON Inertial Sensors and Systems Symposium (ISS), Karlsruhe, Germany:Institute of Flight Guidance (IFF), 2015:1-10.
[3] ARIFFIN N H, ARSAD N, BAIS B. Low cost MEMS gyroscope and accelerometer implementation without Kalman filter for angle estimation[C]//IEEE International Conference on Advances in Electrical, Electronic and System Engineering (ICAEES), Putrajaya, Malaysia:National University of Malaysia (UKM), 2016:77-81.
[4] ZHANG Y J, ZHOU B, SONG M L, et al. A novel MEMS gyro north finder design based on the rotation modulation technique[J]. Sensors, 2017, 17(5):973.
[5] WU Y X, ZHANG H L, WU M P, et al. Observability of strapdown INS alignment:A global perspective[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1):78-102.
[6] 高亢, 陈希军, 任顺清, 等. SINS大失准角传递对准模型的可观测性分析[J]. 哈尔滨工业大学学报, 2019, 51(4):6-11. GAO K, CHEN X J, REN S Q, et al. A novel observability analysis method for SINS large misalignment angle transfer alignment model[J]. Journal of Harbin Institute of Technology, 2019, 51(4):6-11. (in Chinese)
[7] 王琪, 汪立新, 秦伟伟, 等. 基于局部可观测性分析的惯性平台连续自标定路径优化设计[J]. 中国惯性技术学报, 2018, 26(6):713-720. WANG Q, Wang L X, QIN W W, et al. Optimal design of continuous self-calibration path for inertial platform based on local observability analysis[J]. Journal of Chinese Inertial Technology, 2018, 26(6):713-720. (in Chinese)
[8] CHANDRASEKHARY R S, MURTHY B N. Novel two position ground alignment technique for strapdown inertial navigation system[C]//2014 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia:IEEE Aerospace & Electronic Systems Society (AESS), 2014:94-98.
[9] QIAN W X, LIU J Y, ZHAO W, et al. Novel method of improving the alignment accuracy of SINS on revolving mounting base[J]. Journal of Systems Engineering and Electronics, 2009, 20(5):1052-1057.
[10] CAO J Y, TANG J X, WANG Y, et al. Observability analysis of four-position alignment for laser gyroscope strap-down inertial navigation system[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics (ICEOE), Dalian, China:North University of China (NUC), 2011:227-230.
[11] DU S, SUN W, GAO Y. Improving observability of an inertial system by rotary motions of an IMU[J]. Sensors, 2017, 17(4):698.
[12] ZHOU Z, TAN Z, WANG X, et al. Modified dynamic north-finding scheme with a fiber optic gyroscope[J]. IEEE Photonics Journal, 2018, 10(2):1-10.
[13] 王琦, 高春峰, 应智慧, 等. 捷联惯导系统单位置初始对准可观测性分析[J]. 中国激光, 2018(1):18-23. WANG Q, GAO C F, YING Z H, et al. Observability analysis of fixed position initial alignment of strapdown inertial navigation system[J]. Chinese Journal of Lasers, 2018(1):18-23. (in Chinese)
[14] 刘志琴, 王新龙. 捷联惯导系统最优多位置对准的确定与分析[J]. 北京航空航天大学学报, 2013, 39(3):330-334. LIU Z Q, WANG X L. Determination and analysis of optimal multi-position alignment for strapdown inertial navigation system[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(3):330-334. (in Chinese)
[1] 吴珊, 吴雨晨, 侯本伟, 韩宏泉. 基于Kalman滤波的供水管网水力模型用水量动态估计[J]. 清华大学学报(自然科学版), 2024, 64(2): 271-281.
[2] 张文, 丁雨林, 陈咏华, 孙振国. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
[3] 孙恩鑫, 殷玉明, 辛喆, 李升波, 何举刚, 孔周维, 刘秀鹏. 微小加速度下汽车质量-道路坡度自适应估计[J]. 清华大学学报(自然科学版), 2022, 62(1): 125-132.
[4] 李睿, 李春明, 苏杰, 陈亮, 秦兆博, 边有钢. 考虑轨迹预测补偿的履带车辆滑动参数估计方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 133-140.
[5] 吴锦超, 仇诗涵, 李沐恒, 韦兴, 陈秉耀, 应葵. 基于Kalman滤波和生物传热模型的实时磁共振温度成像精度提升[J]. 清华大学学报(自然科学版), 2020, 60(4): 334-340.
[6] 张新喜, 张嵘, 郭美凤, 程高峰, 牛树来. 基于足绑式INS的行人导航三轴磁强计在线校准[J]. 清华大学学报(自然科学版), 2016, 56(2): 211-217.
[7] 周世东,俞抒鹏,肖立民,钟晓峰. OFDM星座旋转调制自适应交织器设计[J]. 清华大学学报(自然科学版), 2014, 54(4): 458-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn