Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 263-270    DOI: 10.16511/j.cnki.qhdxxb.2019.21.031
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
不同几何参数竖直蛇形管内超临界压力CO2流动与换热数值模拟
黄腾1, 李雪芳1, 柯道友2, 巴清心1, 程林1
1. 山东大学 热科学与工程研究中心, 济南 250061;
2. 清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Numerical study of the flow and heat transfer of supercritical CO2 flowing in various vertical serpentine tubes
HUANG Teng1, LI Xuefang1, CHRISTOPHER D M2, BA Qingxin1, CHENG Lin1
1. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China;
2. Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(7680 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 作为一种环境友好型自然工质,CO2被越来越多地应用于热泵系统。该文通过模拟超临界压力CO2在竖直蛇形管中的流动和传热过程,分析了蛇形管几何参数对其换热性能的影响,并探究超临界压力CO2在不同尺寸蛇形管中流动的强化传热机制。建立了12种不同内径和曲率直径组合的蛇形管模型,以探究在给定质量流率条件下,不同内径和曲率直径对超临界压力CO2流动换热性能的影响。结果表明:曲率直径或内径的增大,均会导致传热系数降低;蛇形管内径越大,外壁面温升及温度波动幅度均越大;蛇形管曲率直径越大,外壁温度越高。最后,研究了流动方向对传热性能的影响,发现当内径大于1 mm时,蛇形管换热性能在工质向下流动时优于在工质向上流动时。本文可以为相关换热器的优化设计提供参考,从而提高换热效率和系统性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄腾
李雪芳
柯道友
巴清心
程林
关键词 对流换热超临界二氧化碳蛇形管管型    
Abstract:As an environmentally friendly natural refrigerant, CO2 has been increasingly used as the working fluid in heat pumps. The flow and heat transfer of supercritical CO2 flowing in various serpentine tubes were modeled here to investigate the influence of the tube geometry on the heat transfer and to investigate the heat transfer enhancement mechanisms. Twelve full-size three-dimensional geometries were generated with different inner diameters and bend diameters to investigate the effects of the tube inner diameter and bend diameter on the flow and heat transfer of supercritical CO2 for a given flow flux. The results show that the heat transfer coefficient decreases as both the bend diameter and the inner diameter decrease. Thus, the outer wall temperature increases more rapidly and is higher with larger inner diameters and tube bend diameters. Finally, the effects of flow direction on the heat transfer were also studied to show that upward flow results in a higher heat transfer coefficient than downward flow for inner diameters larger than 1 mm. The present results are useful for enhanced heat exchanger designs to improve system efficiencies.
Key wordsconvective heat transfer    supercritical CO2    serpentine tubes    tube shape
收稿日期: 2019-04-04      出版日期: 2020-03-03
基金资助:山东省自然科学基金资助项目(ZR2017BEE003);中国博士后科学基金项目(2017M612267)。
通讯作者: 程林,教授,E-mail:cheng@sdu.edu.cn     E-mail: cheng@sdu.edu.cn
引用本文:   
黄腾, 李雪芳, 柯道友, 巴清心, 程林. 不同几何参数竖直蛇形管内超临界压力CO2流动与换热数值模拟[J]. 清华大学学报(自然科学版), 2020, 60(3): 263-270.
HUANG Teng, LI Xuefang, CHRISTOPHER D M, BA Qingxin, CHENG Lin. Numerical study of the flow and heat transfer of supercritical CO2 flowing in various vertical serpentine tubes. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 263-270.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.031  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/263
  图1 蛇形管几何模型
  图2 网格划分
  图3 网格独立性验证
  表1 参数设置
  图4 7.65MPa压力下二氧化碳物性参数
  图5 蛇形管内壁面温度模拟结果与实验结果的对比
  图6 (网络版彩图)不同内径蛇形管外壁温度及轴线处CO温度分布
  图7 不同曲率直径下蛇形管内径对换热系数的影响
  图8 (网络版彩图)不同曲率直径蛇形管外壁温度及轴线处CO温度分布
  图9 (网络版彩图)不同曲率直径蛇形管横截面速度矢量分布
  图1 0 向上和向下流动时换热系数的比较
[1] LORENTZEN G. Revival of carbon dioxide as a refrigerant[J]. International Journal of Refrigeration, 1994, 17(5):292-301.
[2] PEARSON A. Carbon dioxide-new uses for an old refrigerant[J]. International Journal of Refrigeration, 2005, 28(8):1140-1148.
[3] KIM M H, PETTERSEN J, BULLARD C W. Fundamental process and system design issues in CO2 vapor compression systems[J]. Progress in Energy and Combustion Science, 2004, 30(2):119-174.
[4] JIANG P X, LIU B, ZHAO C R, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2):741-749.
[5] GROLL E A, KIM J H. Review article:Review of recent advances toward transcritical CO2 cycle technology[J]. HVAC&R Research, 2007, 13(3):499-520.
[6] ZHANG B, PENG X Y, HE Z L, et al. Development of a double acting free piston expander for power recovery in transcritical CO2 cycle[J]. Applied Thermal Engineering, 2007, 27(8-9):1629-1636.
[7] ZHANG Q, LI H X, LEI X L, et al. Numerical investigation on heat transfer enhancement of supercritical CO2 flowing in heated vertically upward tubes[C]//Proceedings of 201614th International Conference on Nanochannels, Microchannels, and Minichannels. Washington, DC, USA:American Society of Mechanical Engineers, 2016.
[8] KUANG G, OHADI M M, ZHAO Y. Experimental study on gas cooling heat transfer for supercritical CO2 in microchannels[C]//Proceedings of 20042nd International Conference on Microchannels and Minichannels. Rochester, New York, USA:ASME, 2004:325-332.
[9] 刘生晖, 黄彦平, 刘光旭, 等. 竖直圆管内超临界二氧化碳强迫对流传热实验研究[J]. 核动力工程, 2017, 38(1):1-5. LIU S H, HUANG Y P, LIU G X, et al. Investigation of correlation for forced convective heat transfer to supercritical carbon dioxide flowing in a vertical tube[J]. Nuclear Power Engineering, 2017, 38(1):1-5. (in Chinese)
[10] JIANG P X, XU Y J, LV J, et al. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media[J]. Applied Thermal Engineering, 2004, 24(8-9):1255-1270.
[11] LI Z H, JIANG P X, ZHAO C R, et al. Experimental investigation of convection heat transfer of CO2 at supercritical pressures in a vertical circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8):1162-1171.
[12] 刘占斌, 费继友, 杨一凡, 等. 管径对超临界CO2管内流动换热的影响研究[J]. 工程热物理学报, 2016, 37(2):357-360. LIU Z B, FEI J Y, YANG Y F, et al. Numerical study on the effect of diameter on supercritical CO2 heat transfer and flow in horizontal tubes[J]. Journal of Engineering Thermophysics, 2016, 37(2):357-360. (in Chinese)
[13] 白万金, 徐肖肖, 吴杨杨. 低质量流速下超临界CO2在管内冷却换热特性[J]. 化工学报, 2016, 67(4):1244-1250. BAI W J, XU X X, WU Y Y. Heat transfer characteristics of supercritical CO2 at low mass flux in tube[J]. CIESC Journal, 2016, 67(4):1244-1250. (in Chinese)
[14] 王珂, 谢金, 刘遵超, 等. 超临界二氧化碳在微细管内的换热特性[J]. 化工学报, 2014, 65(S1):323-327. WANG K, XIE J, LIU Z C, et al. Heat transfer characteristics of supercritical carbon dioxide in a micro-capillary tube[J]. CIESC Journal, 2014, 65(S1):323-327. (in Chinese)
[15] WEN M Y, HO C Y, JANG J K. Boiling heat transfer of refrigerant R-600a/R-290-oil mixtures in the serpentine small-diameter U-tubes[J]. Applied Thermal Engineering, 2007, 27(14-15):2353-2362.
[16] ZHAO Z X, WANG X Y, CHE D F, et al. Numerical studies on flow and heat transfer in membrane helical-coil heat exchanger and membrane serpentine-tube heat exchanger[J]. International Communications in Heat and Mass Transfer, 2011, 38(9):1189-1194.
[17] WU H L, PENG X F, YE P, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6):1186-1195.
[18] XU R N, LUO F, JIANG P X. Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube[J]. International Journal of Heat and Mass Transfer, 2015, 91:552-561.
[19] 罗峰, 胥蕊娜, 姜培学. 细蛇形管内超临界压力CO2层流对流换热数值研究[J]. 工程热物理学报, 2014, 35(6):1170-1175. LUO F, XU R N, JIANG P X. Numerical investigation on laminar convection of supercritical pressure CO2 in a mini serpentine tube[J]. Journal of Engineering Thermophysics, 2014, 35(6):1170-1175. (in Chinese)
[20] 王淑香, 张伟, 牛志愿, 等. 超临界压力下CO2在螺旋管内的混合对流换热[J]. 化工学报, 2013, 64(11):3917-3926. WANG S X, ZHANG W, NIU Z Y, et al. Mixed convective heat transfer to supercritical carbon dioxide in helically coiled tube[J]. CIESC Journal, 2013, 64(11):3917-3926. (in Chinese)
[1] 李玉, 王相钦, 闵敬春. 蛇形管内燃油变物性流动换热特性数值模拟[J]. 清华大学学报(自然科学版), 2024, 64(2): 337-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn