Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (1): 25-31    DOI: 10.16511/j.cnki.qhdxxb.2019.21.036
  专题:安全韧性 本期目录 | 过刊浏览 | 高级检索 |
中压燃气泄漏爆炸对地下空间安全韧性影响
韩永华1,2, 贺丁3, 赵金龙4, 季学伟1, 吴爱枝1, 周轶1
1. 北京市安全生产科学技术研究院, 北京 101100;
2. 清华大学 工程物理系, 公共安全研究院, 北京 100084;
3. 中国寰球工程有限公司, 北京 100012;
4. 中国矿业大学(北京) 应急管理与安全工程学院, 北京 100083
Impact of medium pressure gas leakage explosions on the safety resilience of underground space
HAN Yonghua1,2, HE Ding3, ZHAO Jinlong4, JI Xuewei1, WU Aizhi1, ZHOU Yi1
1. Beijing Academy of Safety Science and Technology, Beijing 101100, China;
2. Institute for Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
3. China Huanqiu Contracting & Engineering Co., LTD, Beijing 100012, China;
4. College of Emergency management and safety engineering, China University of Mining & Technology, Beijing, Beijing 100083, China
全文: PDF(5116 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 地下空间中压燃气管线泄漏极易引发重大火灾爆炸事故。该文参考真实地下空间建筑结构建立物理模型,采用CFD模拟仿真计算用户端中压燃气泄漏扩散和空间爆炸情形,结合地下空间安全性能的特点,从韧性角度分析事故后果对地下空间安全性能的影响。研究认为,在设定的泄漏源和空间环境下,泄漏2和210 s是2个重要的临界时间点,2 s时地下空间发生泄漏的熟食操作间内燃气浓度逐渐达到爆炸下限,210 s时地下空间大厅区域燃气浓度逐渐达到可燃浓度下限。熟食操作间内燃气爆炸超压约为12 kPa,大厅顶部1.0 m厚度燃气爆炸超压约为24 kPa,前者对地下空间结构稳定性影响较小,后者对建筑物结构有一定损坏,空间对事故灾害的承受和吸收能力。地下空间商品耐火性差可能引发火灾事故,加深对空间安全韧性的影响。燃气泄漏爆炸事故影响地下空间的承受能力、吸收能力和恢复能力,据此提出燃气事故对地下空间安全韧性的表征曲线。认为空间安全韧性是燃气泄漏时长的函数,事故后果从形成危险域突变为爆炸、爆燃的关键是遇到点火源。事故后果越严重恢复时间越长、成本越高,恢复后空间性能优于事故之前。提出提升空间韧性的关键措施依次为及时关停泄漏源、强化通风避免形成可燃蒸气云、控制点火源、增设泄压面积、提高空间防火性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩永华
贺丁
赵金龙
季学伟
吴爱枝
周轶
关键词 地下空间中压燃气泄漏爆炸安全韧性    
Abstract:Leakage from underground medium pressure gas pipelines can easily lead to major fires and explosions. A physical model was developed to model accidents in real underground building structures. CFD simulations were then used to predict the gas diffusion and explosion characteristics for leaks from medium pressure pipelines. The safety characteristics of the underground space were analyzed along with the impact of the accident on the resilience of the underground space. The study concluded that 2 s and 210 s are two important critical leak times for the given leakage and space characteristics. The gas concentration in a cooked food portion of a kitchen with gas leakage reached the lower explosion limit at 2 s, while the gas concentration in the hall outside the kitchen reached the lower flammability limit at 210 s. The gas explosion overpressure in the kitchen was about 12 kPa. The explosion overpressure for a 1 m thick gas layer along the top of the hallway was approximately 24 kPa. The shock wave from the kitchen explosion had little influence on the structural stability of the building, while that from the hallway explosion damaged the building structure but did not lead to complete failure of the structure. Thus, poor fire resistance in the underground space can lead to accidents and significantly impact the safety resilience. Gas explosions can affect the bearing capacity, absorption capacity and resilience of the underground space. An accident characterization curve was then developed to show the safety resilience of underground spaces with the resilience a function of the gas leakage length. The key point when the accident transitions from the formation of a dangerous condition to an explosion and deflagration is the relative location of the ignition source. More serious accidents have longer recovery times and higher costs but with better designs after the accident. The key measures to improve the spatial resilience are to promptly close the leakage source, improve ventilation to avoid the formation of a flammable cloud, control ignition sources, increase pressure relief areas, and improve space fire performance.
Key wordsunderground space    medium-pressure gas    leakage    explosion    safety resilience
收稿日期: 2019-06-25      出版日期: 2020-01-03
基金资助:贺丁,工程师,E-mail:15101142443@163.com
引用本文:   
韩永华, 贺丁, 赵金龙, 季学伟, 吴爱枝, 周轶. 中压燃气泄漏爆炸对地下空间安全韧性影响[J]. 清华大学学报(自然科学版), 2020, 60(1): 25-31.
HAN Yonghua, HE Ding, ZHAO Jinlong, JI Xuewei, WU Aizhi, ZHOU Yi. Impact of medium pressure gas leakage explosions on the safety resilience of underground space. Journal of Tsinghua University(Science and Technology), 2020, 60(1): 25-31.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.21.036  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I1/25
  图1 地下空间及熟食操作间空间模型
  图2 地下空间 Q9 随时间变化曲线(0~300s)
  图3 地下空间 Q9 随时间变化曲线(0~15s)
  图4 泄漏2s 和7s 时熟食操作间内可燃蒸气浓度分布 ( 网络版彩图)
  图5 燃气泄漏300s 地下空间可燃气体浓度分布 ( 网络版彩图)
  图6 ( 网络版彩图) 开敞熟食操作间燃气爆炸超压分布
  图7 ( 网络版彩图) 开敞熟食间燃气爆炸0.781s 火焰分布
  图8 地下空间爆炸超压分布( 截面高度1.5 m) ( 网络版彩图)
  图9 地下空间顶部燃气爆炸3.229s 火焰分布 ( 网络版彩图)
  图10 燃气泄漏事件树
  图11 燃气泄漏爆炸对地下空间韧性影响
[1] 邵亦文,徐江.城市韧性:基于国际文献综述的概念解析[J].国际城市规划,2015,30(2):48-54 SHAO Y W, XU J. Understanding urban resilience:A conceptual analysis based on integrated international literature review[J]. Urban Planning International, 2015,30(2):48-54. (in Chinese)
[2] 黄弘,李瑞奇,范维澄,等.安全韧性城市特征分析及对雄安新区安全发展的启示[J].中国安全生产科学技术, 2018,14(07):5-11. HUANG H, LI R Q, FAN W C, et al. Analysis on characteristics of safety resilient city and enlightenments for safe development of Xiongan New Area[J]. Journal of Safety Science and Technology, 2018,14(07):5-11. (in Chinese)
[3] 黄浪,吴超,杨冕,等.韧性理论在安全科学领域中的应用[J].中国安全科学学报,2017,27(03):1-6. HUANG L, WU C, YANG M, et al. Application of resilience theory in field of safety science[J]. China Safety Science Journal, 2017,27(03):1-6. (in Chinese)
[4] BLOOMBERG M. A stronger, more resilient New York[R]. City of New York:PlaNYC Report, 2013.
[5] 《北京城市总体规划(2016年-2035年)》[R]. 北京:北京市规划和国土资源管理委员会. 2017. Beijing Master Urban Planning (2016-2035)[R]. Beijing:Beijing planning and land and resources management committee. 2017. (in Chinese)
[6] 《上海市城市总体规划(2017-2035年)》[R]. 上海:上海市人民政府. 2017. Shanghai Master Urban Planning (2017-2035)[R]. Shanghai:Shanghai municipal people's government. 2017. (in Chinese)
[7] 束昱, 路姗, 阮叶菁.城市地下空间规划与设计[M]. 上海:同济大学出版社, 2015. SHU Y, LU S, RUAN Y J. Urban underground space planning and design[M]. Shanghai:Tongji University Press, 2015. (in Chinese)
[8] 四川安全生产应急救援指挥中心. 关于四川省泸州市江阳区一商场发生一起较大事故的报告[Z/OL]. (2013-12-27)[2019-08-04]. http://yjt.sc.gov.cn/Detail_016f531e-40a9-4874-935e-efa2e3302b9b. Sichuan work safety emergency rescue command center. Report of a major accident in a shopping mall in Jiangyang district, Luzhou city, Sichuan province[Z/OL]. (2013-12-27)[2019-08-04]. http://yjt.sc.gov.cn/Detail_016f531e-40a9-4874-935e-efa2e3302b9b.(in Chinese)
[9] LU L, ZHANG X X, YAN Y T, et al. Theoretical analysis of natural-gas leakage in urban medium-pressure pipelines[J]. Journal of Environment and Human, 2014, 1(2):70-86.(in Chinese)
[10] 秦政先. 天然气管道泄漏扩散及爆炸数值模拟研究[D]. 成都:西南石油大学, 2007. QIN Z X. Numerical simulation of gas pipeline leakage, diffusion and explosion[D]. Chengdu:Southwest Petroleum University, 2007. (in Chinese)
[11] WANG K, HE Y R, LIU Z Y, et al. Experimental study on optimization models for evaluation of fireball characteristics and thermal hazards induced by LNG vapor cloud explosions based on colorimetric thermometry[J]. Journal of Hazardous Materials, 2019(366):282-292.
[12] BAE M H, PAIK J K. Effects of structural congestion and surrounding obstacles on the overpressure loads in explosions:experiment and CFD simulations[J]. Ships and Offshore Structures, 2018(13):165-180.
[13] LI L, CHOI J, BANG J, et al. Numerical investigation of LNG gas dispersion in a confined space:an engineering model[J]. Journal of Mechanical Science and Technology, 2017(31):4533-4540.
[14] WANG D, QIAN X M, YUAN M Q, et al. Numerical simulation analysis of explosion process and destructive effect by gas explosion accident in buildings[J]. Journal of Loss Prevention in the Process Industries, 2017(49):215-227.
[15] JI T C, QIAN X M, YUAN M Q, et al. Case study of a natural gas explosion in Beijing, China[J]. Journal of Loss Prevention in the Process Industries, 2017(49):401-410.
[16] 中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 城镇燃气设计规范:GB 50028-2006[S]. 北京:中国建筑工业出版社, 2006. Ministry of Construction of the People's Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Code for design of city gas engineering:GB 50028-2006[S]. Beijing:China Building Industry Press, 2006. (in Chinese)
[17] Launder B E, Reece G J, Rodi W, Progress in the development of a reynoldsstress turbulent closure[J], Journal of Fluid Mech. 1975(68):537-566.
[18] Middha P, Engel D, Hansen O R, Can the addition of hydrogen to natural gas reduce the explosion risk[J]. Int. J. Hydrogen Energy, 2011(36) 2628-2636.
[19] 谭洪艳, 于革, 郭继平. 燃气安全技术与管理[M]. 北京:冶金工业出版社, 2013. TAN H Y, YU G, GUO J P. Fuel gas safety technology and management[M]. Beijing:Metallurgical Industry Press. 2013. (in Chinese)
[20] 中华人民共和国安全生产监督管理总局. 化工企业定量风险评价导则:AQT3046-2013[S] 2013. Work Safety Supervision and Administration Department of the People's Republic of China. Guidelines for quantitative risk assessment of chemical enterprises:AQT3046-2013[S] 2013. (in Chinese)
[21] Cimellaro G P, Reinhorn A M, Bruneau M. Framework for analytical quantification of disaster resilience[J]. Engineering Structures, 2010, 32(11):3639-3649.
[22] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003,19(4):733-752.
[1] 吴建松, 蔡继涛, 赵亦孟, 操阅, 周睿, 庞磊. 城市综合管廊燃气爆炸传播特性实验研究[J]. 清华大学学报(自然科学版), 2022, 62(6): 987-993.
[2] 杨皓元, 水凯, 王振华, 陈思怡, 尤飞, 张云. 丙烷喷射火焰中电极形状对间隙击穿特性的影响[J]. 清华大学学报(自然科学版), 2022, 62(6): 1094-1101.
[3] 巴清心, 赵明斌, 赵泽滢, 黄腾, 王建强, 李雪芳, 肖国萍. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
[4] 邱桐, 陈湘生, 苏栋. 城市地下空间综合韧性防灾抗疫建设框架[J]. 清华大学学报(自然科学版), 2021, 61(2): 117-127.
[5] 王波, 何洋扬, 聂冰冰, 许述财, 张金换. 底部爆炸条件下车内乘员损伤风险仿真评估[J]. 清华大学学报(自然科学版), 2020, 60(11): 902-909.
[6] 李瑞奇, 黄弘, 周睿. 基于韧性曲线的城市安全韧性建模[J]. 清华大学学报(自然科学版), 2020, 60(1): 1-8.
[7] 范乐, 王燕语, 张靖岩, 韦雅云. 基于安全韧性分析的地震应急救援实训功能设计策略[J]. 清华大学学报(自然科学版), 2020, 60(1): 9-17.
[8] 范乐, 王燕语, 张靖岩, 韦雅云. 基于人群疏散行为的西南山地城镇住区安全韧性提升对策[J]. 清华大学学报(自然科学版), 2020, 60(1): 32-40.
[9] 欧阳永基, 魏强, 王嘉捷, 王清贤. 基于脆弱点特征导向的软件安全测试[J]. 清华大学学报(自然科学版), 2017, 57(9): 903-908.
[10] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[11] 黄首清, 索双富, 李永健, 杨杰, 刘守文, 王玉明. 基于2维叉排管束模型的刷式密封介质流动计算[J]. 清华大学学报(自然科学版), 2016, 56(2): 160-166.
[12] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn