Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (6): 432-437    DOI: 10.16511/j.cnki.qhdxxb.2019.22.008
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
不同压力条件下典型机舱材料燃烧特征的实验研究
刘全义1, 孙中正1, 吕志豪1, 贾旭宏1, 智茂永1, 张辉2
1. 中国民用航空飞行学院 民航安全工程学院, 广汉 618307;
2. 清华大学 公共安全研究院, 北京 100084
Experimental study of the burning characteristics of typical aircraft cabin materials at various pressures
LIU Quanyi1, SUN Zhongzheng1, LÜ Zhihao1, JIA Xuhong1, ZHI Maoyong1, ZHANG Hui2
1. College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China;
2. Institute of Public Safety Research, Tsinghua University, Beijing 100084, China
全文: PDF(2691 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了尽早检测和预防机舱火灾,选取飞机座椅面料及舱壁材料作为实验试样,在四川广汉(96 kPa)和康定机场(61 kPa)进行燃烧对比实验。测量试样的质量损失比、烟密度、烟气成分及火焰形态,以探讨低压对典型机舱内饰材料燃烧特性的影响。实验结果表明:低压下试样的质量损失比小于常压;低压下烟密度值快速升高并维持在较高值变化;低压下的烟密度峰值约为常压下烟密度峰值的2倍;尽管CO和CO2峰值出现时间基本一致,但在两种压力条件下CO和CO2浓度变化差异非常明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 航空安全低压环境内饰材料燃烧特性阻燃织物    
Abstract:The burning characteristics of aircraft cabin materials must be well characterized to enable prevention and early detection of in-flight fires. This study characterized two aircraft cabin materials for the seat and the interior wall at Kangding Airport in Sichuan Province where the atmospheric pressure is 61.0 kPa and at Guanghan where the pressure is 96.0 kPa. The experiments measured the mass loss ratio, smoke density, smoke components, and flame shape to examine the effect of low pressure on the burning characteristics. The results show that both materials have higher mass loss ratios at 96.0 kPa than at 61.0 kPa. However, the smoke density increases rapidly and changes more at 61.0 kPa. The smoke density peaks for both materials at 61.0 kPa are twice those at 96.0 kPa. Although the times to reach the peak concentrations of CO and CO2 are nearly the same, the concentrations of CO and CO2 are quite different for the two pressures.
Key wordsaviation safety    low pressure environment    interior material    burning characteristics    fire resistant fabrics
收稿日期: 2018-11-05      出版日期: 2019-06-01
基金资助:国家重点研发计划(2018YFC0809500);国家自然科学基金项目(U1633203,U1733126);中国民用航空飞行学院基金项目(J2016-41,J2018-36,X2018-20);灭火救援技术公安部重点实验室开放课题资助项目(KF201807)
引用本文:   
刘全义, 孙中正, 吕志豪, 贾旭宏, 智茂永, 张辉. 不同压力条件下典型机舱材料燃烧特征的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(6): 432-437.
LIU Quanyi, SUN Zhongzheng, LÜ Zhihao, JIA Xuhong, ZHI Maoyong, ZHANG Hui. Experimental study of the burning characteristics of typical aircraft cabin materials at various pressures. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 432-437.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.008  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I6/432
  图1 实验布置图
  图2 实验流程图
  图3 (网络版彩图)两种典型机舱材料燃烧对比
  图4 两种典型机舱材料燃烧质量损失比
  图5 (网络版彩图)两种典型机舱 材料100s时的燃烧图像
  图6 两种典型机舱材料燃烧烟密度变化
  图7 两种典型机舱材料燃烧过程 CO 变化
  图8 两种典型机舱材料燃烧过程 CO 变化
[1] 邝丽丽. 运输类飞机舱内材料防火适航要求及符合性验证试验方法[J]. 民用飞机设计与研究, 2018(1):19-23. KUANG L L. Airworthiness requirements of fire prevention and compliance verification test method for transport airplane interior materials[J]. Civil Aircraft Design & Research, 2018(1):19-23. (in Chinese)
[2] 郭惠敏. 生态纺织技术在民机客舱内饰中的应用[D]. 上海:东华大学, 2016. GUO H M. Research of ecological textile technology application in the civil aircraft cabin design[D]. Shanghai:Donghua University, 2016. (in Chinese)
[3] THOMSEN M, MURPHY D C, FERNANDEZ-PELLO C, et al. Flame spread limits (LOC) of fire resistant fabrics[J]. Fire Safety Journal, 2017, 91:259-265.
[4] NIU Y, HE Y P, HU X K, et al. Experimental study of burning rates of cardboard box fires near sea level and at high altitude[J]. Proceedings of the Combustion Institute, 2013, 34(2):2565-2573.
[5] 王洁, 潘杨月, 郑荣, 等. 飞机货舱低气压环境对火灾探测参量影响研究[J]. 火灾科学, 2016, 25(4):213-217. WANG J, PAN Y Y, ZHENG R, et al. Experimental investigation on the influence of low pressure on fire detection signals in aircraft cargo compartment fires[J]. Fire Safety Science, 2016, 25(4):213-217. (in Chinese)
[6] FERERES S, LAUTENBERGER C, FERNANDE-PELLO ZC, et al. Mass flux at ignition in reduced pressure environments[J]. Combustion and Flame, 2011, 158(7):1301-1306.
[7] FERERES S, LAUTENBERGER C, FERNANDEZ-PELLO C, et al. Understanding ambient pressure effects on piloted ignition through numerical modeling[J]. Combustion and Flame, 2012, 159(12):3544-3553.
[8] OSORIO A F, FERNANDEZ-PELLO C, URBAN D L, et al. Limiting conditions for flame spread in fire resistant fabrics[J]. Proceedings of the Combustion Institute, 2013, 34(2):2691-2697.
[9] OSORIO A F, PELLO A F, URBAN D L, et al. Low-pressure flame spread limits of fire resistant fabrics[C]//43rd International Conference on Environmental Systems. Vail, USA:ICES Press, 2013.
[10] OSORIO A F, MIZUTANI K, FERNANDEZ-PELLO C, et al. Microgravity flammability limits of ETFE insulated wires exposed to external radiation[J]. Proceedings of the Combustion Institute, 2015, 35(3):2683-2689.
[11] RASBASH D J, LANGFORD B. Burning of wood in atmospheres of reduced oxygen concentration[J]. Combustion and Flame, 1968, 12(1):33-40.
[12] KLEINHENZ J E. Flammability and flame spread of Nomex® and cellulose in space habitat environments[D]. Cleveland, USA:Case Western Reserve University, 2013.
[13] JOO H I, GÜLDER Ö L. Soot formation and temperature field structure in co-flow laminar methane-air diffusion flames at pressures from 10 to 60 atm[J]. Proceedings of the Combustion Institute, 2009, 32(1):769-775. 〖HJ1.82mm〗
[14] DAI J K, YANG L Z, ZHOU X D, et al. Experimental and modeling study of atmospheric pressure effects on ignition of pine wood at different altitudes[J]. Energy & Fuels, 2010, 24(1):609-615.
[15] LI Z H, HE Y P, ZHANG H, et al. Combustion characteristics of n-heptane and wood crib fires at different altitudes[J]. Proceedings of the Combustion Institute, 2009, 32(2):2481-2488.
[16] BENTO D S, THOMSON K A, GÜLDER Ö L. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures[J]. Combustion and Flame, 2006, 145(4):765-778.
[17] 王存栋. 民航飞机的火灾危险性浅析[J]. 中国西部科技, 2013, 12(12):77-78. WANG C D. Analysis on fire risk of civil aviation aircraft[J]. Science and Technology of West China, 2013, 12(12):77-78. (in Chinese)
[18] 李爱民, 王雷, 李润东, 等. 典型装饰织物在不同氧浓度下热分析研究[J]. 中国安全科学学报, 2004, 14(4):101-106. LI A M, WANG L, LI R D, et al. Thermal analysis of typical decorative fabrics under different oxygen concentration[J]. China Safety Science Journal, 2004, 14(4):101-106. (in Chinese)
[19] 王伟刚, 孔文俊, 张培元. 低压环境下热薄固体燃料表面火焰传播实验研究[J]. 工程热物理学报,2004, 25(5):887-890. WANG W G, KONG W J, ZHANG P Y. Experimental studies on flame spread across thermally thin solid fuel surfaces under lower ambient pressure[J]. Journal of Engineering Thermophysics, 2004, 25(5):887-890. (in Chinese)
[20] 陈潇. 表面朝向对典型固体可燃物着火特性及侧向火蔓延的影响研究[D]. 合肥:中国科学技术大学, 2016. CHEN X. Effects of angular orientation on piloted ignition and lateral flame spread of typical solid combustibles[D]. Hefei:University of Science and Technology of China, 2016. (in Chinese)
[21] 贾阳, 林高华, 徐高, 等. 低气压下火焰视频图像特征研究[J]. 火灾科学, 2016, 25(4):183-187. JIA Y, LIN G H, XU G, et al. Flame features under low atmospheric pressure based on video image analysis[J]. Fire Safety Science, 2016, 25(4):183-187. (in Chinese)
[22] 杨满江. 高原环境下压力影响气体燃烧特征和烟气特性的实验与模拟研究[D]. 合肥:中国科学技术大学, 2011. YANG M J. Experimental and computational study on the effects of low atmospheric pressure on the gas fuel combustion characteristics and smoke properties under high altitudes[D]. Hefei:University of Science and Technology of China, 2011. (in Chinese)
[23] 朱平, 隋淑英, 王炳, 等. 阻燃及未阻燃棉织物的热裂解[J]. 纺织学报, 2002, 23(6):32-34, 37. ZHU P, SUI S Y, WANG B, et al. Study of pyrolysis process and products of flame-retardant cotton fabrics[J]. Journal of Textile Research, 2002, 23(6):32-34, 37. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn