Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (8): 601-606    DOI: 10.16511/j.cnki.qhdxxb.2019.22.016
  微生物岩土技术 本期目录 | 过刊浏览 | 高级检索 |
低碱胶凝材料负载微生物应用于混凝土的开裂自修复
徐晶, 王先志
同济大学 先进土木工程材料教育部重点实验室, 上海 201804
Self-healing of concrete cracks by microorganisms loaded in low-alkali cementitious material
XU Jing, WANG Xianzhi
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 201804, China
全文: PDF(1725 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 利用微生物诱导成矿实现混凝土的开裂自修复,面临的首要问题是对菌体进行负载保护,而载体材料是关键。该文选取了掺入质量分数20%硅灰的硫铝酸盐水泥作为低碱性胶凝负载材料,通过对胶凝材料的pH值以及凝结时间的优化,并评价负载后细菌芽孢的活性,探索出了一个有效的负载体系。混凝土开裂自修复的测试结果表明:借助该负载体系,28 d可使最大约322 μm宽的混凝土裂缝得以完全修复。修复后,混凝土抗压强度恢复到损伤前的84%,水密闭性恢复至未损伤时的水平。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐晶
王先志
关键词 混凝土裂缝微生物自修复载体    
Abstract:The primary issue for self-healing of concrete cracks by microbially induced mineralization is protection of the bacteria and the key to protecting the bacteria is the carrier material selection. This paper used calcium sulphoaluminate cement with 20% silica fume as a low-alkali binder type carrier material. An effective loading method was developed by regulating the binder pH and setting time through evaluations of the bacterial spore activity in this carrier. The concrete crack self-healing was successful up to a maximum crack width of about 322 μm that could be healed after 28 days. After the self-healing, the concrete compressive strength recovered up to 84% of the original strength with the water tightness completely restored.
Key wordsconcrete    crack    microorganism    self-healing    carrier
收稿日期: 2019-02-25      出版日期: 2019-08-05
基金资助:上海市自然科学基金项目(17ZR1441900);中央高校基本科研业务费项目(22120180269);国家重点研发计划(2016YFC0700802-05)
引用本文:   
徐晶, 王先志. 低碱胶凝材料负载微生物应用于混凝土的开裂自修复[J]. 清华大学学报(自然科学版), 2019, 59(8): 601-606.
XU Jing, WANG Xianzhi. Self-healing of concrete cracks by microorganisms loaded in low-alkali cementitious material. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 601-606.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.016  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I8/601
  表1 载体胶凝材料中营养物质及细菌掺量
  表2 自修复混凝土试件材料配比
  图1 不同配比下大水灰比水泥浆体滤液的pH 值
  图2 芽孢及不同掺量的营养物质对胶凝材料凝结时间的影响
  图3 芽孢活性检验分析结果
  图4 负载芽孢后的修复粉剂颗粒微观形貌
  图5 混凝土试件表面裂缝自修复前后对比
  图6 裂缝修复的统计分析
  图7 混凝土试件自修复前后的毛细吸水率
  图8 混凝土试件自修复前后的抗压强度
[1] BOQUET E, BORONAT A, RAMOS-CORMENZANA A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246(1):527-529.
[2] DEJONG J T, SOGA K, KAVAZANJIAN E, et al. Biogeochemical processes and geotechnical applications:Progress, opportunities and challenges[J]. Géotechnique, 2013, 63(4):287-301.
[3] MACLEOD F A, LAPPIN-SCOTT H M, COSTERTON J W. Plugging of a model rock system by using starved bacteria[J]. Applied and Environmental Microbiology, 1988, 54(6):1365-1372.
[4] GOLLAPUDI U K, KNUTSON C L, BANG S S, et al. A new method for controlling leaching through permeable channels[J]. Chemosphere, 1995, 30(4):695-705.
[5] YANG Z, CHENG X. A performance study of high-strength microbial mortar produced by low pressure grouting for the reinforcement of deteriorated masonry structures[J]. Construction and Building Materials, 2013, 41(4):505-515.
[6] DE MUYNCK W, VERBEKEN K, DE BELIE N, et al. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone[J]. Ecological Engineering, 2010, 36(2):99-111.
[7] 李沛豪, 屈文俊. 生物修复加固材料在土木工程中的应用研究进展[J]. 材料科学与工程学报, 2008, 26(5):810-815. LI P H, QU W J. State of arts in application of bioremedying and bioreinforceing materials in civil engineering[J]. Journal of Materials Science and Engineering, 2008, 26(5):810-815. (in Chinese)
[8] JONKERS H M. Bacteria-based self-healing concrete[J]. HERON, 2011, 56(1-2):1-12.
[9] JONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2):230-235.
[10] TZIVILOGLOU E, WIKTOR V, JONKERS H M, et al. Bacteria-based self-healing concrete to increase liquid tightness of cracks[J]. Construction and Building Materials, 2016, 122(3):118-125.
[11] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cement and Concrete Research, 2014, 64(6):1-10.
[12] 钱春香, 任立夫, 罗勉. 基于微生物诱导矿化的混凝土表面缺陷及裂缝修复技术研究进展[J]. 硅酸盐学报, 2015, 43(5):619-631. QIAN C X, REN L F, LUO M. Development of concrete surface defects and cracks repair technology based on microbial-induced mineralization[J]. Journal of the Chinese Ceramic Society, 2015, 43(5):619-631. (in Chinese)
[13] LORS C, DUCASSE-LAPEYRUSSE J, GAGNÉ R, et al. Microbiologically induced calcium carbonate precipitation to repair microcracks remaining after autogenous healing of mortars[J]. Construction and Building Materials, 2017, 141(5):461-469.
[14] WANG J Y, DE BELIE N, VERSTRAETE W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4):567-577.
[15] WANG J Y, SNOECK D, VAN VLIERBERGHE S, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68(8):110-119.
[16] WANG J Y, SOENS H, VERSTRAETE W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56(6):139-152.
[17] ALAZHARI M, SHARMA T, HEATH A, et al. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete[J]. Construction and Building Materials, 2018, 160(5):610-619.
[18] BUNDUR Z B, AMIRI A, ERSAN Y C, et al. Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability[J]. Cement and Concrete Research, 2017, 98(9):44-49.
[19] ERŞN Y, HERNANDEZ SANABRIA E, BOON N, et al. Enhanced crack closure performance of microbial mortar through nitrate reduction[J]. Cement & Concrete Composites, 2016, 70(10):159-170.
[20] DOUGLAS L A, BREMNER J M. Extraction and colorimetric determination of urea in soils[J]. Soil Science Society of America Journal, 1970, 34(6):859-862.
[21] DE MUYNCK W, DEBROUWER D, DE BELIE N, et al. Bacterial carbonate precipitation improves the durability of cementitious materials[J]. Cement and Concrete Research, 2008, 38(7):1005-1014.
[1] 安瑞楠, 林鹏, 陈道想, 安邦, 高阳阳. 锚碇大体积混凝土智能通水温控方法与系统[J]. 清华大学学报(自然科学版), 2024, 64(4): 601-611.
[2] 黄贲, 康飞, 唐玉. 基于目标检测的混凝土坝裂缝实时检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1078-1086.
[3] 陈波, 张华, 陈永灿, 李永龙, 熊劲松. 基于特征增强的水工结构裂缝语义分割方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1135-1143.
[4] 周迅, 李永龙, 周颖玥, 王皓冉, 李佳阳, 赵家琦. 基于改进DeepLabV3+网络的坝面裂缝检测方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1153-1163.
[5] 安瑞楠, 林鹏, 陈道想, 安邦, 卢冠楠, 林之涛. 超大混凝土结构温度梯度监测与温度场演化[J]. 清华大学学报(自然科学版), 2023, 63(7): 1050-1059.
[6] 李明, 林鹏, 李子昌, 刘元广, 张睿, 高向友. 缺口导流期碾压混凝土坝智能通水温控[J]. 清华大学学报(自然科学版), 2023, 63(7): 1060-1067.
[7] 王皓冉, 谢辉, 陈永灿, 刘康, 李正文, 李永龙. 消力池底板混凝土磨蚀智能检测与数值仿真[J]. 清华大学学报(自然科学版), 2023, 63(7): 1095-1103.
[8] 林海涛, 王皓冉, 李永龙, 陈永灿, 张华. 水下非均匀光照场景下的混凝土图像增强方法[J]. 清华大学学报(自然科学版), 2023, 63(7): 1144-1152.
[9] 徐小蓉, 何涛洪, 雷峥琦, 张全意, 黎聪, 金峰. 超长坝段堆石混凝土重力坝蓄水运行安全评价[J]. 清华大学学报(自然科学版), 2022, 62(9): 1375-1387.
[10] 余舜尧, 徐小蓉, 邱流潮, 金峰. 堆石混凝土浇筑前后的非均质温度分布试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1388-1400.
[11] 程恒, 周秋景, 娄诗建, 张国新, 刘毅, 雷峥琦. 石坝河水库堆石混凝土重力坝施工期工作性态仿真[J]. 清华大学学报(自然科学版), 2022, 62(9): 1408-1416.
[12] 吕淼, 安雪晖, 李鹏飞, 张京斌, 白皓. 自密实混凝土全过程智能生产研究进展[J]. 清华大学学报(自然科学版), 2022, 62(8): 1270-1280.
[13] 王辉, 马嘉均, 周虎, 何世钦, 金峰. 堆石混凝土单轴受压力学性能[J]. 清华大学学报(自然科学版), 2022, 62(2): 339-346.
[14] 樊启祥, 段亚辉, 王业震, 王孝海, 杨思盟, 康旭升. 混凝土保湿养护智能闭环控制研究[J]. 清华大学学报(自然科学版), 2021, 61(7): 671-680.
[15] 宁泽宇, 林鹏, 彭浩洋, 汪志林, 陈文夫, 谭尧升, 周天刚. 混凝土实时温度数据移动平均分析方法及应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 681-687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn